Neuroscience
-
Early-life emotional stress may be associated with affective and cognitive disorders later in life, yet satisfactory animal models for studying the underlying mechanisms are limited. Because maternal presence and behavior critically influence molecular and behavioral stress responses in offspring, we sought to create a model of dysfunctional, fragmented maternal nurturing behavior that would, in turn, provoke chronic early-life stress in the offspring. ⋯ Limiting dams' ability to construct a nest for their pups leads to an abnormal repertoire of nurturing behaviors, possibly as a result of chronic stress and mild anxiety of the dams. Because the fragmented and aberrant maternal behavior provoked chronic stress in the pups, the limited-nesting paradigm provides a useful tool for studying the mechanisms and consequences of such early-life stress experience in the offspring.
-
The appropriate level of microtubule stability is fundamental in neurons to assure correct polarity, migration, vesicles transport and to prevent axonal degeneration. In the present study, we have identified Notch pathway as an endogenous microtubule stabilizer. ⋯ However, contrary to Taxol, Jagged1 induced downregulation of the microtubule severing protein Spastin. We suggest that a fine-tuned manipulation of Notch signaling may represent a novel approach to modulate neuronal cytoskeleton plasticity.
-
Activation of the spinal phospholipase A(2) (PLA(2)) -cyclooxygenase (COX) -prostaglandin signaling pathway is widely implicated in nociceptive processing. Although the role of spinal COX isoforms in pain signal transmission has been extensively characterized, our knowledge of PLA(2) enzymes in this cascade is limited. Among all PLA(2) groups, cytosolic calcium-dependent PLA(2) group IVA (cPLA(2)IVA) appears to be the predominant PLA(2) enzyme in the spinal cord. ⋯ Immunocytochemistry confirmed that the reduction occurred in neurons and oligodendrocytes. cPLA(2)IVA AS did not alter expression of several other PLA(2) isoforms, such as secretory PLA(2) (groups IIA and V) and calcium-independent PLA(2) (group VI), indicating that the AS was specific for cPLA(2)IVA. This selective knockdown of spinal cPLA(2)IVA did not change acute nociception (i.e. paw withdrawal thresholds to acute thermal stimuli and intradermal formalin-induced first phase flinching), however, it significantly attenuated formalin-induced hyperalgesia (i.e. second phase flinching behavior), which reflects spinal sensitization. Thus the present findings suggest that cPLA(2)IVA may specifically participate in spinal nociceptive processing.
-
Mechanisms underlying cold hypersensitivity in neuropathic states are unclear. Recent data indicate both transient receptor potential (TRP) M8 and TRPA1 play a role. In relation to TRPA1, there are reported increases in mRNA. ⋯ In contrast, compared with naive rats, mechanical thresholds of the Adelta-fibers in SNL rats are significantly decreased, the proportion of cold-sensitive and MO-sensitive Adelta-fibers is significantly increased and the response magnitude of Adelta-fibers to MO is significantly increased. MO-induced activity in Adelta-fibers is significantly reduced by Ruthenium Red (TRPA1 receptor antagonist). These results demonstrate that TRPA1 is expressed on peripheral nociceptors, and they are up-regulated on intact Adelta-fibers following nerve injury, contributing to cold hypersensitivity.
-
Recent studies have demonstrated nicotinamide (NAM), a soluble B-group vitamin, to be an effective treatment in experimental models of traumatic brain injury (TBI). However, research on this compound has been limited to administration regimens starting shortly after injury. This study was conducted to establish the window of opportunity for NAM administration following controlled cortical impact (CCI) injury to the frontal cortex. ⋯ In the working memory task both the 15-min and 4-h groups also improved working memory compared with saline treatment. The window of opportunity for NAM treatment is task-dependent and extends to 8 h for the sensorimotor tests but only extends to 4 h post-injury in the cognitive tests. These results suggest that a 50 mg/kg treatment regimen starting at the clinically relevant time point of 4 h may result in attenuated injury severity in the human TBI population.