Neuroscience
-
It has previously been reported that dopaminergic grafts derived from early donor age, embryonic age 12-day-old (E12) rat embryos produced a fivefold greater yield of dopamine neurons than those derived from conventional E14 donors. The present study addresses whether E12 grafts are able to ameliorate lesion-induced behavioral deficits to the same extent as E14 grafts. In a unilateral rat model of Parkinson's disease, animals received grafts derived from either E12 or E14 donor embryos, dispersed at four sites in the lesioned striatum. ⋯ However, E12 grafts resulted in cell yields greater than previously reported for untreated primary tissue, with mean TH-positive cell counts in excess of 25,000 neurons, compared with E14 TH cell counts of 4000-5000 cells, representing survival rates of 75% and 12.5%, respectively, based on the expected adult complement. The equivalence of graft induced behavioral recovery between the two graft groups is attributed to a threshold number of cells, above which no further improvement is seen. Such high dopamine cell survival rates should mean that multiple, functioning grafts can be derived from a single embryonic donor, and if similar yields could be obtained from human tissues then the goal of one embryo per patient would be achieved.
-
Recent data have indicated that the neuropeptide cocaine amphetamine-regulated transcript (CART) may be a downstream mediator of the effect of CB1 receptor antagonist on appetite regulation. In order to identify possible interactions between CART and central CB1R expressing neurons, a detailed mapping of CART and CB1R expression and immunoreactivity in the brain was initiated. Single radioactive in situ hybridizations revealed a predominant overlap between CART and CB1R mRNA in hypothalamic and lower brainstem nuclei. ⋯ Further attempts to immunohistochemically characterize the distribution of CB1R were, however, deemed impossible as any of eight commercially available antibodies/antisera gave rise to non-specific staining patterns. Furthermore, the staining pattern obtained was not discriminate between CB1R knockout mice and wild type mice. Collectively, we demonstrate at the messenger level that CB1R expressing perikarya colocalize with CART expressing neurons in hypothalamic and brainstem areas known to be important in appetite control, whereas interactions at the protein level necessitate a demand for cautious interpretations of immunohistochemical results.
-
Stains for acetylcholinesterase (AChE) and retrograde labeling with Fluorogold (FG) were used to study olivocochlear neurons and their dendritic patterns in mice. The two methods gave similar results for location and number of somata. The total number of medial olivocochlear (MOC) neurons in the ventral nucleus of the trapezoid body (VNTB) is about 170 per side. ⋯ DPO neurons, however, had more symmetric dendrites that projected into more dorsal parts of the trapezoid body, suggesting that this small group of olivocochlear neurons has very different physiological properties. Dendrites of both types of neurons were somewhat elongated rostrally, about 20% longer than those directed caudally. These results can be interpreted as extensions of dendrites of olivocochlear neurons toward their synaptic inputs: medially to meet crossing fibers from the cochlear nucleus that are part of the MOC reflex pathway, and rostrally to meet descending inputs from higher centers.
-
Comparative Study
Sound localization behavior in ferrets: comparison of acoustic orientation and approach-to-target responses.
Auditory localization experiments typically either require subjects to judge the location of a sound source from a discrete set of response alternatives or involve measurements of the accuracy of orienting responses made toward the source location. To compare the results obtained by both methods, we trained ferrets by positive conditioning to stand on a platform at the center of a circular arena prior to stimulus presentation and then approach the source of a broadband noise burst delivered from 1 of 12 loudspeakers arranged at 30 degrees intervals in the horizontal plane. Animals were rewarded for making a correct choice. ⋯ However, the final head bearing progressively undershot the target with increasing eccentricity and rarely exceeded 60 degrees to each side of the midline. In contrast to the approach-to-target responses, the accuracy of the head orienting responses did not change much with stimulus duration, suggesting that the improvement in percent correct scores with longer stimuli was due, at least in part, to re-sampling of the acoustical stimulus after the initial head turn had been made. Nevertheless, for incorrect trials, head orienting responses were more closely correlated with the direction approached by the animals than with the actual target direction, implying that at least part of the neural circuitry for translating sensory spatial signals into motor commands is shared by these two behaviors.
-
We used an antibody to choline acetyltransferase (ChAT) to label cholinergic cells in guinea pig brainstem. ChAT-immunoreactive (IR) cells comprise several prominent groups, including the pedunculopontine tegmental nucleus, laterodorsal tegmental nucleus, and parabigeminal nucleus, as well as the cranial nerve somatic motor and parasympathetic nuclei. Additional concentrations are present in the parabrachial nuclei and superior colliculus. ⋯ A few ChAT-IR cells are found in the cochlear nucleus and the ventral nucleus of the lateral lemniscus. The distribution of cholinergic cells in guinea pigs is largely similar to that of other species; differences occur mainly in cell groups that have few ChAT-IR cells. The results provide a basis for further studies to characterize the connections of these cholinergic groups.