Neuroscience
-
Hyperpolarization-activated cyclic nucleotide-gated channels (HCN) are responsible for the functional hyperpolarization-activated current (I(h)) in dorsal root ganglion (DRG) neurons. We studied HCN1-4 channel mRNA and protein expression and correlated these findings with I(h) functional properties in rat DRG neurons of different size. Quantitative RT-PCR (TaqMan) analysis demonstrated that HCN2 and HCN1 mRNAs were more abundantly expressed in large diameter (55-80 microm) neurons, while HCN3 mRNA was preferentially expressed in small diameter (20-30 microm) neurons. ⋯ Functionally, I(h) amplitude and density were significantly larger, and activation kinetics faster, in large diameter neurons when compared with small neurons. I(h) activation rates in small and large diameter DRG neurons were consistent with the relative abundance of HCN subunits in the respective cell type, considering the reported HCN channel activation rates in heterologous systems (HCN1>HCN2 approximately HCN3>HCN4), suggesting exclusivity of roles of different HCN subunits contributing to the excitability of DRG neurons of different size. Additionally, a functional role of I(h) in small DRG neuron excitability was evaluated using a computational model.
-
The activation of glial cells in the CNS has been suggested to be involved in abnormal pain sensation after peripheral nerve injury. Previous studies demonstrated phosphorylation of p38 mitogen-activated protein kinase (MAPK) in spinal cord glial cells after peripheral nerve injury, and such phosphorylation has been suggested to be involved in the development of neuropathic pain. The aim of this study was to examine the dorsal column nuclei for phosphorylation of p38 MAPK following peripheral nerve injury and to explore a possibility of its contribution to neuropathic pain. ⋯ Continuous infusion of a p38 MAPK inhibitor into the cisterna magna for 14 days beginning on the day of SNL suppressed the development of tactile allodynia, but not thermal hyperalgesia induced by nerve injury. These results demonstrate that SNL activates p38 MAPK pathway in microglia in the gracile nucleus as well as in the spinal cord dorsal horn. Activation of p38 MAPK in medullary microglia may contribute to the pathogenesis of neuropathic pain.