Neuroscience
-
Anxiety states and anxiety-related behaviors appear to be regulated by a distributed and highly interconnected system of brain structures including the basolateral amygdala. Our previous studies demonstrate that exposure of rats to an open-field in high- and low-light conditions results in a marked increase in c-Fos expression in the anterior part of the basolateral amygdaloid nucleus (BLA) compared with controls. The neural mechanisms underlying the anatomically specific effects of open-field exposure on c-Fos expression in the BLA are not clear, however, it is likely that this reflects activation of specific afferent input to this region of the amygdala. ⋯ On the test day rats were either, 1) exposed to an open-field in low-light conditions (8-13 lux) for 15 min (OF); 2) briefly HA or 3) left undisturbed (control). We report that dual immunohistochemical staining for c-Fos and CTb revealed an increase in the percentage of c-Fos-immunopositive basolateral amygdaloid complex-projecting neurons in open-field-exposed rats compared with HA and control rats in the ipsilateral CA1 region of the ventral hippocampus, subiculum and lateral entorhinal cortex. These data are consistent with the hypothesis that exposure to the open-field arena activates an anxiety-related neuronal system with convergent input to the basolateral amygdaloid complex.
-
The expression of voltage-gated sodium channels is regulated at multiple levels, and in this study we addressed the potential for alternative splicing of the Na(v)1.2, Na(v)1.3, Na(v)1.6 and Na(v)1.7 mRNAs. We isolated novel mRNA isoforms of Na(v)1.2 and Na(v)1.3 from adult mouse and rat dorsal root ganglia (DRG), Na(v)1.3 and Na(v)1.7 from adult mouse brain, and Na(v)1.7 from neonatal rat brain. These alternatively spliced isoforms introduce an additional exon (Na(v)1.2 exon 17A and topologically equivalent Na(v)1.7 exon 16A) or exon pair (Na(v)1.3 exons 17A and 17B) that contain an in-frame stop codon and result in predicted two-domain, truncated proteins. ⋯ Here we show that the expression of Na(v)1.3 mRNA containing exons 17A and 17B is unchanged in mouse following peripheral nerve injury (axotomy), whereas total Na(v)1.3 mRNA expression is upregulated by 33% (P=0.003), suggesting differential regulation of the alternatively spliced transcripts. The alternatively spliced rodent exon sequences are highly conserved in both the human and chicken genomes, with 77-89% and 72-76% identities to mouse, respectively. The widespread conservation of these sequences strongly suggests an additional level of regulation in the expression of these channels, that is also tissue-specific.
-
Cytidine-5-diphosphocholine (CDP-choline or citicholine) is an essential molecule that is required for biosynthesis of cell membranes. In adult humans it is used as a memory-enhancing drug for treatment of age-related dementia and cerebrovascular conditions. However the effect of CDP-choline on perinatal brain is not known. ⋯ However significant increases in neurite length, branch points and total area occupied by the neurons were observed. We conclude that exogenous supplementation of CDP-choline during development causes stable changes in neuronal morphology. Significant increase in dendritic growth and branching of pyramidal neurons from the somatosensory cortex resulted in enlarging the surface area occupied by the neurons which we speculate will augment processing of sensory information.
-
The aim of this study was to show the presence, distribution and function of the pituitary adenylate cyclase activating polypeptide (PACAP) and its receptors in the CNS and peripheral nervous system of the mollusk, Helix pomatia. PACAP-like and pituitary adenylate cyclase activating polypeptide receptor (PAC1-R)-like immunoreactivity was abundant both in the CNS and the peripheral nervous system of the snail. In addition several non-neuronal cells also revealed PACAP-like immunoreactivity. ⋯ In electrophysiological experiments, extracellular application of PACAP27 and PACAP38 transiently depolarized or increased postsynaptic activity of neurons expressing PAC1-R. In several neurons PACAP elicited a long lasting hyperpolarization which was eliminated after 1.5 h continuous washing. Taken together, these results indicate that PACAP may have significant role in a wide range of basic physiological functions in snail.