Neuroscience
-
Retinal bipolar cells relay visual information from photoreceptors to third-order retinal neurons. Bipolar cells, comprising multiple types, play an essential role in segregating visual information into multiple parallel pathways in the retina. The identification of molecular markers that can label specific retinal bipolar cells could facilitate the investigation of bipolar cell functions in the retina. ⋯ GFP expression in retinal cone bipolar cells was seen as early as postnatal day 5. In addition, despite severe retinal degeneration due to the presence of the rd1 mutation in this transgenic line, the density of GFP-labeled cone bipolar cells remained stable up to at least 6 months of age. This transgenic mouse line will be a useful tool for the study of type 4 cone bipolar cells in the retina under both normal and disease conditions.
-
Increasing age is associated with a poor prognosis following traumatic brain injury (TBI). CNS axons may recover poorly following TBI due to expression of myelin-derived inhibitors to axonal outgrowth such as Nogo-A. To study the role of Nogo-A/B in the pathophysiological response of the elderly to TBI, 1-year-old mice deficient in Nogo-A/B (Nogo-A/B homozygous(-/-) mice), Nogo-A/B heterozygous(-/+) mice, and age-matched wild-type (WT) littermate controls were subjected to a controlled cortical impact (CCI) TBI. ⋯ Neither TBI nor the absence of NogoA/B caused an increased A beta expression. Myelin staining showed a reduced area and density in the corpus callosum in brain-injured Nogo-A/B(-/-) animals compared to their littermate controls. These novel and unexpected behavioral results demonstrate that the absence of Nogo-A/B may negatively influence outcome, possibly related to hypomyelination, following TBI in mice and suggest a complex role for this myelin-associated axonal growth inhibitor following TBI.
-
Little is known about the G protein-coupled receptor desensitization process during pregnancy. Wistar pregnant rats were treated with (-)N(6)-phenylisopropyladenosine (R-PIA), an adenosine A(1) receptor (A(1)R) agonist, in their drinking water during pregnancy, and the effect on A(1)R/adenylyl cyclase system was studied in both maternal and fetal brain. In maternal brain, binding assays revealed a significant decrease in total receptor numbers in plasma membranes (27%, P<0.05), with no significant changes in receptor affinity. ⋯ On the other hand, forskolin- and forskolin-plus guanosine-5'-O-(3-thiotriphosphate) (GTP gamma S)-stimulated adenylyl cyclase activity was decreased in maternal (P<.01) and fetal brain (P<.001). Furthermore, adenylyl cyclase inhibition elicited by N(6)-cyclohexyladenosine (CHA), a selective A(1)R agonist, was significantly decreased in both maternal (P<0.05) and fetal brain (P<.01), suggesting a desensitization of the A(1)R/adenylyl cyclase pathway. Therefore, these results suggest that R-PIA intake during pregnancy causes desensitization of the A(1)R-mediated inhibitory transduction pathway in both maternal and fetal brain, probably due to the decreased density of A(1)R at the cell surface.