Neuroscience
-
Morphine sensitization is a model of latent, functionally inducible increase in dopamine D(1) receptor-mediated transmission, which may be unmasked by an external stimulus. Morphine-sensitized rats present dopamine D(1) receptor-dependent stereotypies upon morphine challenge and resilience to unavoidable stress-induced behavioral deficits. This tonic increase in dopamine D(1) dopaminergic transmission is counter-adaptive to an enhanced mu-opioid receptor-dependent signaling in striatal areas. ⋯ The stress-induced neurochemical modifications and their sensitivity to receptor antagonists were similar to those observed after acute morphine administration. In conclusion, these results suggest that in the experimental conditions used an increase in dopamine output in striatal areas is followed by a complex neurochemical pattern, in which the initial stimulation of dopamine D(1) receptors triggers a sequence of signaling events that lead to an mGluR(5)-mediated increase in phospho-Thr75 DARPP-32 levels. Since DARPP-32 phosphorylated in Thr75 inhibits cAMP-dependent protein kinase (PKA) activity, the final result is a decrease in the dopamine D(1) receptor-dependent phosphorylation events.
-
Retinal bipolar cells relay visual information from photoreceptors to third-order retinal neurons. Bipolar cells, comprising multiple types, play an essential role in segregating visual information into multiple parallel pathways in the retina. The identification of molecular markers that can label specific retinal bipolar cells could facilitate the investigation of bipolar cell functions in the retina. ⋯ GFP expression in retinal cone bipolar cells was seen as early as postnatal day 5. In addition, despite severe retinal degeneration due to the presence of the rd1 mutation in this transgenic line, the density of GFP-labeled cone bipolar cells remained stable up to at least 6 months of age. This transgenic mouse line will be a useful tool for the study of type 4 cone bipolar cells in the retina under both normal and disease conditions.
-
Increasing age is associated with a poor prognosis following traumatic brain injury (TBI). CNS axons may recover poorly following TBI due to expression of myelin-derived inhibitors to axonal outgrowth such as Nogo-A. To study the role of Nogo-A/B in the pathophysiological response of the elderly to TBI, 1-year-old mice deficient in Nogo-A/B (Nogo-A/B homozygous(-/-) mice), Nogo-A/B heterozygous(-/+) mice, and age-matched wild-type (WT) littermate controls were subjected to a controlled cortical impact (CCI) TBI. ⋯ Neither TBI nor the absence of NogoA/B caused an increased A beta expression. Myelin staining showed a reduced area and density in the corpus callosum in brain-injured Nogo-A/B(-/-) animals compared to their littermate controls. These novel and unexpected behavioral results demonstrate that the absence of Nogo-A/B may negatively influence outcome, possibly related to hypomyelination, following TBI in mice and suggest a complex role for this myelin-associated axonal growth inhibitor following TBI.