Neuroscience
-
Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are active at resting membrane potential and thus contribute to neuronal excitability. Their increased activity has recently been demonstrated in models of nerve injury-induced pain. The major aim of the current study was to investigate altered HCN channel protein expression in trigeminal sensory neurons following inflammation of the dura. ⋯ In addition, the number of retrogradely labeled neurons from the dura expressing HCN1 and HCN2 was significantly increased to 247% (HCN1) and 171% (HCN2), three days after inflammation. When the opioid receptor partial agonist, buprenorphine, was given systemically, immediately after CFA, the inflammation-induced increase in HCN protein expression in both Western blot and immunohistochemical experiments was not observed. These results suggest that HCN1 and HCN2 are involved in inflammation-induced sensory neuron hyperexcitability, and indicate that an opioid receptor agonist can reverse the protein upregulation.
-
Na(+),K(+)-ATPase contributes to the asymmetrical distribution of sodium and potassium ions across the plasma membrane and to maintenance of the membrane potential in many types of cells. Alterations in this protein may play a significant role in many human neurological disorders, including epilepsy. We studied expression of the alpha3 isoform of Na(+),K(+)-ATPase in the freeze lesion (FL) microgyrus model of developmental epileptogenesis to test the hypothesis that it is downregulated following neonatal cortical injury. ⋯ A reduction in alpha3 mRNA was observed in the neuropil of FL cortical layer V up to 1610 mum from the microgyral edge. The developmental time course for expression of the alpha3 subunit between P7 and P60 was examined in naive rat cortices and results showed that there was a significant increase in alpha3 IR between P7 and P10. The significant decreases in Na(+),K(+)-ATPase in the paramicrogyral cortex may contribute to epileptogenesis.
-
The majority of the studies on the actions of estrogens in the ventrolateral part of the hypothalamic ventromedial nucleus (VMNvl) concern the factors that modulate the receptive component of the feminine sexual behavior and the expression of molecular markers of neuronal activation. To further our understanding of the factors that regulate synaptic plasticity in the female VMNvl, we have examined the effects of estradiol and progesterone, and of estrogen receptor (ER) subtype selective ligands on the number of dendritic and spine synapses established by individual VMNvl neurons and on sexual behavior. In contrast to earlier studies that analyzed synapse densities, our results show that exogenous estradiol increases the number of spine as well as of dendritic synapses, irrespective of the dose and regimen of administration. ⋯ Despite its relevant role in feminine sexual behavior, progesterone had no synaptogenic effect in the VMNvl as no changes in synapse numbers were noticed in rats treated with progesterone alone, with estradiol followed by progesterone or with the antiprogestin mifepristone (RU486). Except for the sequential administration of estradiol and progesterone, none of the regimens was associated with lordosis response to vaginocervical stimulation. Therefore, from the sex steroids that undergo cyclic variations over the estrous cycle, only estrogens, acting through both ERalpha and ERbeta, play a key role in the activation of the neural circuits involving the ventromedial nucleus of the hypothalamus.
-
Social vocalizations are particularly important stimuli in an animal's auditory environment. Because of their importance, vocalizations should be strongly represented in auditory pathways. Mice commonly emit ultrasonic vocalizations with spectral content between 45 and 100 kHz. ⋯ The combinations of tones that elicit responses are the quadratic and/or cubic intermodulation distortion components that are generated by the cochlea. Thus, the intermodulation distortions in the cochlea may provide a previously overlooked mechanism for auditory processing of complex stimuli such as vocalizations. The implication of these findings is that nonlinear interactions of frequencies, possibly caused by distortions in the system, may be used to enhance the sensitivity to behaviorally important stimuli.
-
Co-cultures of 3T3-L1 adipocytes with neurons from the rat dorsal root ganglia (DRG) showed enhanced neuritogenesis and synaptogenesis. Microarray analysis for upregulated genes in adipocyte/DRG co-cultures currently points to apolipoproteins D and E (ApoD, ApoE) as influential proteins. We therefore tested adipocyte-secreted cholesterol and the carrier proteins ApoD and ApoE3. ⋯ The application of ApoD, ApoE3, and cholesterol to DRG cell cultures corresponded with increased expression of the chemokine stromal cell-derived factor 1 and its receptor CXC chemokine receptor 4 (CXCR4). Surprisingly, the inhibition of CXCR4 by the antagonistic drug AMD3100 decreased the apolipoprotein/cholesterol dependent neurotrophic effects. We thus assume that apolipoprotein-induced neuritogenesis in DRG cells interferes with CXCR4 signaling, and that adipocyte-derived apolipoproteins might be helpful in nerve repair.