Neuroscience
-
Cerebral ischemia/reperfusion injury is characterized by the development of inflammatory response, in which vascular macrophages and endogenous microglia are involved. Recent studies showed marked induction of hematopoietic prostaglandin D synthase (HPGDS) after ischemic/reperfusion injury and its localization in microglia, but the molecular mechanism(s) of HPGDS actions in cerebral ischemia is not clear. To clarify the role of HPGDS in cerebral ischemia, C57BL/6 mice and bone marrow chimera mice with cerebral ischemia/reperfusion injury were treated with (4-benzhydryloxy-(1) {3-(1H-tetrazol-5-yl)-propyl}piperidine (HQL-79), a specific inhibitor of HPGDS. ⋯ HQL-79 reduced NeuN expression in the transition area and Iba1 expression (P<0.0001) in the ischemic peri- and penumbra area, but increased COX-2 (P<0.05) and NF-kB expression (P<0.05) in ischemic penumbra and increased formation of nitrotyrosine (P<0.0001) and iNOS (P<0.0001) in the ischemic core area at 72 h and 7 days after reperfusion. In EGFP chimera mice, HQL-79 increased the migration of Iba1/EGFP-positive bone marrow-derived monocytes/macrophages, and simultaneously upregulated iNOS expression in the ischemic core area (P<0.0001), but increased intrinsic microglia/macrophages in ischemic peri-area and penumbra (P<0.0001) at 72 h and 7 days after reperfusion, suggesting involvement of monocytes/macrophages in HQL-79-induced expansion of ischemic injury. Our results demonstrated that the neuroprotective effects of HPGDS in our model are mediated by suppression of activation and infiltration of inflammatory cells.
-
The behavioral and motivational changes that result from use of abused substances depend upon activation of neuronal populations in the reward centers of the brain, located primarily in the corpus striatum in primates. To gain insight into the cellular mechanisms through which abused drugs reinforce behavior in the primate brain, changes in firing of neurons in the ventral (VStr, nucleus accumbens) and dorsal (DStr, caudate-putamen) striatum to "natural" (juice) vs. drug (i.v. cocaine) rewards were examined in four rhesus monkeys performing a visual Go-Nogo decision task. ⋯ Results show that neurons in the primate striatum encoded cocaine-rewarded trials similar to juice-rewarded trials, except for (1) increased firing on cocaine-rewarded trials, (2) prolonged activation during delivery of i.v. cocaine infusion, and (3) differential firing in ventral (VStr cells) vs. dorsal (DStr cells) striatum cocaine-rewarded trials. Reciprocal activations of antithetic subpopulations of cells during different temporal intervals within the same trial suggest a functional interaction between processes that encode drug and natural rewards in the primate brain.
-
The transmembrane isoform of agrin (Tm-agrin) is the predominant form expressed in the brain but its putative roles in brain development are not well understood. Recent reports have implicated Tm-agrin in the formation and stabilization of filopodia on neurites of immature central and peripheral neurons in culture. In maturing central neurons, dendritic filopodia are believed to facilitate synapse formation. ⋯ We found that dendritic filopodia density was markedly reduced, as was synapse density along dendrites. Moreover, synapse formation was more sharply reduced on dendrites of infected neurons contacted by uninfected axons than on uninfected dendrites contacted by infected axons. The results are consistent with a physiological role for Tm-agrin in the maturation of hippocampal neurons involving positive regulation of dendritic filopodia and consequent promotion of synaptogenesis, but also suggest a role for axonal agrin in synaptogenesis.
-
The nociceptin/orphanin FQ (N/OFQ) opioid peptide receptor (NOPr) is a new member of the opioid receptor family consisting of mu, delta and kappa opioid receptors. The anti-opioid properties of its endogenous ligand, N/OFQ provide the receptor interesting potentials in symptoms and processes related to drug addiction, learning and memory, anxiety and depression, and nociception. Using target-selected N-ethyl-N-nitrosourea (ENU)-driven mutagenesis we recently generated a rat model bearing a premature stop codon in the opioid-like receptor (oprl1) gene, and here we describe the primary characterization of this novel model. ⋯ Quantitative autoradiographic mapping of mu, delta and kappa opioid receptors using [(3)H]DAMGO, [(3)H]deltorphin and [(3)H]CI-977, respectively, did not show any changes in opioid receptor binding. In conclusion, we present a novel mutant rat lacking NOPr without compensatory changes in mu, delta and kappa opioid receptors. We anticipate that this mutant rat will have heuristic value to further understand the function of NOPr.
-
At the developing vertebrate neuromuscular junction, the acetylcholine receptor becomes aggregated at high density in the postsynaptic muscle membrane. Receptor localization is regulated by the motoneuron-derived factor, agrin, and requires an intracellular, scaffolding protein called rapsyn. However, it remains unclear where rapsyn binds on the acetylcholine receptor and how their interaction is regulated. ⋯ When expressed in muscle cells, rapsyn co-immunoprecipitated together with a CD4-alpha helical region chimera, independent of agrin signaling. Together, these findings demonstrate that rapsyn interacts with the acetylcholine receptor via an alpha-helical structural motif conserved between the alpha, beta and epsilon subunits. Binding at this site likely mediates the critical rapsyn interaction involved in localizing the acetylcholine receptor at the neuromuscular junction.