Neuroscience
-
I.c.v. administration of the peptide insulin-like growth factor-1 (IGF-1) has been shown to be an effective neuroprotective strategy in the brain of different animal models, a major advantage being the achievement of high concentrations of IGF-1 in the brain without altering serum levels of the peptide. In order to exploit this therapeutic approach further, we used high performance recombinant adenoviral (RAd) vectors expressing their transgene under the control of the potent mouse cytomegalovirus immediate early (mCMV) promoter, to transduce brain ependymal cells with high efficiency and to achieve effective release of transgenic IGF-1 into the cerebrospinal fluid (CSF). We constructed RAd vectors expressing either a chimeric green fluorescent protein fused to HSV-1 thymidine kinase (TK/GFP)(fus), or the cDNA encoding rat IGF-1, both driven by the mCMV promoter. ⋯ For tanycytes (TK/GFP)(fus) expression was evident in their cytoplasmic processes as they penetrated deep into the hypothalamic parenchyma. I.c.v. injection of RAd-IGF-1 induced high levels of IGF-1 in the CSF but not in serum. We conclude that the ependymal route constitutes an effective approach for implementing experimental IGF-1 gene therapy in the brain.
-
The present study investigated the time course of segment and tone encoding in Chinese spoken production with an event-related brain potentials (ERPs) experiment. Native Chinese speakers viewed a series of pictures and made Go/noGo decisions along dimensions of segmental onset or tone information of picture names. ⋯ Moreover, the results of scalp distributions and onset latency patterns of the N200 effect on segmental and tonal decisions suggest that segmental and metrical encoding is relatively disassociated in Chinese spoken production. Our findings provide additional evidence from Chinese as a kind of non-alphabetic language concerning theories of phonological encoding based on alphabetic languages.
-
Granulocyte colony stimulating factor (G-CSF) is a multi-modal hematopoietic growth factor, which also has profound effects on the diseased CNS. G-CSF has been shown to enhance recovery from neurologic deficits in rodent models of ischemia. G-CSF appears to facilitate neuroplastic changes by both mobilization of bone marrow-derived cells and by its direct actions on CNS cells. ⋯ To explain the G-CSF triggered amyloid reduction and associated reversal of cognitive impairment, several mechanisms of action were explored. (1) G-CSF was hypothesized to increase activation of resident microglia and to increase mobilization of marrow-derived microglia. The effect of G-CSF on microglial activation was examined by quantitative measurements of total microglial burden. To determine if G-CSF increased trafficking of marrow-derived microglia into brain, bone marrow-derived green fluorescent protein-expressing (GFP+) microglia were visualized in the brains of chimeric AD mice. (2) To assess the role of immune-modulation in mediating G-CSF effects, a panel of cytokines was measured in both plasma and brain. (3) To test the hypothesis that reduction of A beta deposits can affect synaptic area, quantitative measurement of synaptophysin immunoreactivity in hippocampal CA1 and CA3 sectors was undertaken. (4) To learn whether enhanced hippocampal neurogenesis was induced by G-CSF treatment, numbers of calretinin-expressing cells were determined in dentate gyrus.
-
The cytokine transforming growth factor alpha (TGF alpha) has proangiogenic and proneurogenic effects and can potentially reduce infarct volumes. Therefore, we administered TGF alpha or vehicle directly into the area surrounding the infarct in female mice that received gender-mismatched bone marrow transplants from green fluorescent protein (GFP)-expressing males prior to undergoing permanent middle cerebral artery occlusion. Newborn cells were tracked with bromodeoxyuridine (BrdU) labeling and immunohistochemistry at 90 days after stroke onset. ⋯ Our results also show that infarct size was significantly reduced in animals treated with TGF alpha compared with controls. These results suggest that TGF alpha can induce angiogenesis, neurogenesis and neuroprotection after stroke. At least part of the pro-angiogenic effect appears to be secondary to the incorporation of bone marrow-derived endothelial cells into blood vessels in the infarct border zone.
-
The nociceptin/orphanin FQ (N/OFQ) opioid peptide receptor (NOPr) is a new member of the opioid receptor family consisting of mu, delta and kappa opioid receptors. The anti-opioid properties of its endogenous ligand, N/OFQ provide the receptor interesting potentials in symptoms and processes related to drug addiction, learning and memory, anxiety and depression, and nociception. Using target-selected N-ethyl-N-nitrosourea (ENU)-driven mutagenesis we recently generated a rat model bearing a premature stop codon in the opioid-like receptor (oprl1) gene, and here we describe the primary characterization of this novel model. ⋯ Quantitative autoradiographic mapping of mu, delta and kappa opioid receptors using [(3)H]DAMGO, [(3)H]deltorphin and [(3)H]CI-977, respectively, did not show any changes in opioid receptor binding. In conclusion, we present a novel mutant rat lacking NOPr without compensatory changes in mu, delta and kappa opioid receptors. We anticipate that this mutant rat will have heuristic value to further understand the function of NOPr.