Neuroscience
-
Stereotaxic atlases of the mouse brain are important in neuroscience research for targeting of specific internal brain structures during surgical operations. The effectiveness of stereotaxic surgery depends on accurate mapping of the brain structures relative to landmarks on the skull. During postnatal development in the mouse, rapid growth-related changes in the brain occur concurrently with growth of bony plates at the cranial sutures, therefore adult mouse brain atlases cannot be used to precisely guide stereotaxis in developing brains. ⋯ At present, most widely-used stereotaxic atlases of the mouse brain are based on histology, but the anatomical fidelity of ex vivo atlases to in vivo mouse brains has not been evaluated previously. To account for ex vivo tissue distortion due to fixation as well as individual variability in the brain, we developed a population-averaged in vivo magnetic resonance imaging adult mouse brain stereotaxic atlas, and a distortion-corrected DTI atlas was generated by nonlinearly warping ex vivo data to the population-averaged in vivo atlas. These atlas resources were developed and made available through a new software user-interface with the objective of improving the accuracy of targeting brain structures during stereotaxic surgery in developing and adult C57BL/6J mouse brains.
-
Neuronal discharge and local field potential (LFP) oscillations in the olfactory bulb (OB) are modulated by odorant stimulation. The LFP oscillations have been proposed as the mechanism that facilitates synchronization of OB output neurons and the representation of similar odorants. Gamma LFP oscillations depend on the OB inhibitory network and early sensory deprivation modifies this inhibitory network. ⋯ The modulation of LFP oscillations by odorants was also predominant in the deprived (53%) compared to the normal OB (17%). In contrast, a higher fraction of MT cells' discharge was locked to the gamma LFP cycle in the normal OB. These results suggest that early unilateral olfactory deprivation increases the OB sensitivity to odorants and reduce the temporal synchrony between unitary activity and gamma LFP oscillations without altering the basal neuronal discharge.
-
Cerebral glucose hypometabolism is common in temporal lobe epilepsy (TLE). The temporospatial evolution of these metabolic changes during epileptogenesis remains to be determined. We measured the regional normalized cerebral metabolic rate for glucose (nCMRglc) with (18)F-fluorodeoxyglucose (FDG)-small animal positron emission tomography (microPET) in animals receiving systemic pilocarpine application. ⋯ Conversely, the hippocampus and thalamus presented with persistent hypometabolism during epileptogenesis. The cerebellum and pons maintained normal glucose utilization during this process. We also found that severe glucose hypometabolism in the entorhinal cortex during the early phase was correlated with epileptogenesis, indicating the critical role of the entorhinal cortex in the early stages of TLE.
-
There are declines in the protein expression of the NR2B (mouse epsilon2) and NR1 (mouse zeta1) subunits of the N-methyl-D-aspartate (NMDA) receptor in the cerebral cortex and hippocampus during aging in C57BL/6 mice. This study was designed to determine if there is a greater effect of aging on subunit expression and a stronger relationship between long-term spatial memory and subunit expression within the synaptic membrane than in the cell as a whole. Male, C57BL/6JNIA mice (4, 11 and 26 months old) were tested for long-term spatial memory in the Morris water maze. ⋯ In the aged mice, however, higher expression of both subunits was associated with poorer memory. These results indicate that aging could be altering the localization of the NR2B subunit to the synaptic membrane within the frontal cortex. The correlational results suggest that NMDA receptor functions, receptor subunit composition, and/or the environment in which the receptor interacted in the hippocampus were not the same in the old animals as in younger mice and this may have contributed to memory declines during aging.
-
The encoding of reward-predictive stimuli by neurons in the nucleus accumbens (NAcc) depends on integrated synaptic activity from the basolateral amygdala (BLA) and medial prefrontal cortex (mPFC) afferent inputs. In a previous study, we found that single electrical stimulation pulses applied to the BLA facilitate mPFC-evoked spiking in NAcc neurons in a timing-dependent manner, presumably by a fast glutamatergic mechanism. In the present study, the ability of repetitive BLA activation to modulate synaptic inputs to NAcc neurons through dopamine- or N-methyl-D-aspartate (NMDA)-dependent mechanisms is characterized. ⋯ This was not attributable to mechanisms involving NMDA or dopamine D1, D2, D3 or D5 receptors, since blockade of these receptors did not affect the BLA-mediated depression. BLA-mediated depression was only evident when the BLA stimulation evoked spikes in the recorded neuron; thus, depolarization of the recorded neuron may be critical for this effect. The ability of the BLA to suppress mPFC-to-NAcc signaling may be a mechanism by which normal or pathologically heightened emotional states disrupt goal-directed behavior in favor of emotionally-driven responses.