Neuroscience
-
The behavioral effects of cocaine are affected by gene knockout (KO) of the dopamine transporter (DAT), the serotonin transporter (SERT) and the norepinephrine transporter (NET). The relative involvement of each of these transporters varies depending on the particular behavioral response to cocaine considered, as well as on other factors such as genetic background of the subjects. Interestingly, the effects of these gene knockouts on cocaine-induced locomotion are quite different from those on reward assessed in the conditioned place preference paradigm. ⋯ In the post-conditioning assessment, conditioned locomotion was not observed in DAT KO mice, and was reduced in SERT KO and NET KO mice. These data reaffirm the central role of dopamine and DAT in the behavioral effects of cocaine. Furthermore, they emphasize the polygenic basis of cocaine-mediated behavior and the non-unitary nature of drug reward mechanisms, particularly in the context of previous studies that have shown normal cocaine-conditioned place preference in DAT KO mice.
-
Antidepressant action may involve stimulation of brain-derived neurotrophic factor (BDNF). BDNF also regulates long-term potentiation (LTP). We hypothesized that the 5-HT and norepinephrine reuptake inhibitor, venlafaxine, would stimulate BDNF expression and alter LTP more effectively than the selective 5-HT reuptake inhibitor, citalopram. ⋯ Input/output function was significantly but equally reduced after 3 weeks of citalopram, venlafaxine, or control treatment. Decreased BDNF protein in citalopram and vehicle control animals, and decreased input/output function may be consequences of individual housing of animals, which we used to ensure proper dosing. Venlafaxine stimulation of BDNF and inhibition of LTP may be related to the reported effectiveness of venlafaxine in treatment of depression.
-
The unilateral microinjection of noradrenaline (NA), but not vehicle solution, into the rostromedial preoptic area (POA) elicited simultaneous increases in cutaneous temperatures of the tail and sole of the foot and decreases in the whole-body O(2) consumption rate, heart rate, and colonic temperature in urethane-chloralose-anesthetized rats, suggesting a coordinate increase in heat loss and decrease in heat production. The magnitude of these responses increased dose-dependently over the range of 1-100 pmol, except for the metabolic and bradycardic responses. Similar hypothermic responses were elicited by the microinjection of 40 pmol methoxamine (an alpha(1)-adrenergic agonist), but not by that of clonidine (an alpha(2)-agonist) or isoproterenol (a beta-agonist). ⋯ The microinjection of 130 fmol prostaglandin (PG) E(2) into the NA-sensitive site always elicited thermogenic, tachycardic, and hyperthermic responses. Furthermore, the PGE(2)-induced febrile responses were greatly attenuated by prior administration of NA at the same site. These results demonstrate that NA in the rostromedial POA exerts alpha(1)-adrenoceptor-mediated hypothermic effects and opposes PGE(2)-induced fever.
-
Leptin is critical for normal food intake and energy metabolism. While leptin receptor (ObR) function has been well studied in hypothalamic feeding circuitries, the functional relevance of ObR in extrahypothalamic areas is largely unknown. Central regulatory pathways involved in food intake utilize various neuropeptides, such as urocortin 1 (Ucn1), cocaine- and amphetamine-regulated transcript peptide (CART) and nesfatin-1. ⋯ However, their peptide levels were not significantly changed. The peptide level and mRNA of nesfatin-1 were unaffected by fasting. We conclude that npEW-neurons containing Ucn1, CART and nesfatin-1 co-express ObR, and may be involved in leptin-mediated feeding control in male rats only.
-
Internal models are a key feature of most modern theories of motor control. Yet, it has been challenging to localize internal models in the brain, or to demonstrate that they are more than a metaphor. In the present review, I consider a large body of data on the cerebellar floccular complex, asking whether floccular output has features that would be expected of the output from internal models. ⋯ If we consider the brainstem circuits and eyeball as a more broadly conceived "oculomotor plant," then the output from the floccular complex could be the manifestation of an inverse model of "plant" dynamics. (3) Floccular output reflects an internal model of the physics of the orbit where head and eye motion sum to produce gaze motion. The effects of learning on floccular output suggest that it is modeling the interaction of the visually-guided and vestibular-driven components of eye and gaze motion. Perhaps the insights from studying oculomotor control provide groundwork to guide the analysis of internal models for a wide variety of cerebellar behaviors.