Neuroscience
-
A significant number of postmenopausal women report increased anxiety and vulnerability to stress, which has been linked to decreased secretion of ovarian steroids. Communication between the serotonin system and the corticotropin releasing factor (CRF) system determines stress sensitivity or resilience. This study examines the effects of the ovarian steroids, estradiol (E) and progesterone (P) on the CRF system components that impact serotonin neurons in the midbrain of nonhuman primates. ⋯ E±P increased UCN1 immunostaining in the cell bodies and increased UCN1 fiber density in the caudal linear nucleus. Estrogen receptor beta (ERβ), but not ERα was detected in the nucleus of UCN1-positive neurons. While the mechanism of ovarian hormone regulation of the midbrain CRF system requires further investigation, these studies clearly demonstrate another pathway by which ovarian hormones may have positive effects on anxiety and mood regulation.
-
We examined whether repeated exposure to the increasingly abused amphetamine (AMPH) derivative 3,4-methylenedioxymethamphetamine (MDMA; ecstasy) results in long-lasting neurobehavioral changes, and further, the ability of contextual cues to modulate these changes. We focused on dorsal striatum, a brain region implicated in the formation of persistent drug-related habits. Rats were transported to a novel recording chamber and treated with once-daily injections (s.c.) of (±)-MDMA (5.0 mg/kg) or saline for 5 days, followed by a challenge injection 14 days later either in the same (Experiment 1) or different context (Experiment 2). ⋯ Furthermore, several alterations in striatal electrophysiology were apparent on challenge day, but only in rats that displayed sensitization. Conversely, structural changes in striatal medium spiny neurons, such as increases in spine density, were observed in MDMA-treated rats regardless of whether they displayed behavioral sensitization. Thus, it appears that reorganization of synaptic connectivity in dorsal striatum may contribute to long-lasting drug-induced behavioral alterations, but that these behavioral alterations are subject to modification depending on individual differences and the context surrounding drug administration.
-
Cholinergic neurons of the pontine laterodorsal tegmentum (LDT) play a critical role in regulation of behavioral state. Therefore, elucidation of mechanisms that control their activity is vital for understanding of how switching between wakefulness, sleep and anesthetic states is effectuated. In vivo studies suggest that GABAergic mechanisms within the pons play a critical role in behavioral state switching. ⋯ All of these GABA-mediated actions were found to occur in histochemically-identified cholinergic neurons. Taken together, these data indicate for the first time that cholinergic neurons of the LDT exhibit functional GABA(A, B and C) receptors, including extrasynaptically located GABA(A) receptors, which may be tonically activated by synaptic overflow of GABA. Accordingly, the activity of cholinergic LDT neurons is likely to be significantly affected by GABAergic tone within the nucleus, and so, demonstrated effects of GABA on behavioral state may be mediated, in part, via direct actions on cholinergic neurons in the LDT.
-
For many patients, pain is the first sign of cancer and, while pain can be present at any time, the frequency and intensity of pain tend to increase with advancing stages of the disease. Thus, between 75 and 90% of patients with metastatic or advanced-stage cancer will experience significant cancer-induced pain. One major unanswered question is why cancer pain increases and frequently becomes more difficult to fully control with disease progression. ⋯ These results suggest that cancer cells and their associated stromal cells release nerve growth factor (NGF), which induces a pathological remodeling of sensory and sympathetic nerve fibers. This pathological remodeling of the peripheral nervous system then participates in driving cancer pain. Similar to therapies that target the cancer itself, the data presented here suggest that, the earlier therapies blocking this pathological nerve remodeling are initiated, the more effective the control of cancer pain.
-
Cerebral ischemia causes blood flow derangements characterized by hyperemia (increased cerebral blood flow, CBF) and subsequent hypoperfusion (decreased CBF). We previously demonstrated that protein kinase C delta (δPKC) plays an important role in hippocampal neuronal death after ischemia. However, whether part of this protection is due to the role of δPKC on CBF following cerebral ischemia remains poorly understood. ⋯ Sprague-Dawley (SD) rats pretreated with a δPKC specific inhibitor (δV1-1, 0.5 mg/kg) exhibited attenuation of hyperemia and latent hypoperfusion characterized by vasoconstriction followed by vasodilation of microvessels after 2-vessel occlusion plus hypotension measured by 2-photon microscopy. In an asphyxial cardiac arrest model (ACA), SD rats treated with δV1-1 (pre- and post-ischemia) exhibited improved perfusion after 24 h and less hippocampal CA1 neuronal death 7 days after ACA. These results suggest possible therapeutic potential of δPKC in modulating CBF and neuronal damage after cerebral ischemia.