Neuroscience
-
The hippocampus plays a central role in memory formation in the mammalian brain. The subiculum is the principal target of CA1 pyramidal cells and thus serves as the major relay station for the outgoing hippocampal information. Pyramidal cells in the subiculum have been classified as burst-spiking (BS) and regular-spiking (RS) cells. ⋯ The isoproterenol-induced LTP in (BS) cells does not depend on postsynaptic Ca(2+)-signaling, as 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA) does not prevent its induction. Furthermore, paired-pulse facilitation (PPF) and coefficient of variation (CV) analysis indicate the site of the LTP expression to be presynaptic. Our findings show that activation of β-adrenergic receptors (β-ARs) at CA1-subiculum synapses induces a cell-type-specific form of chemical LTP in subicular (BS) cells that may allow a target-specific trafficking of hippocampal output.
-
For many patients, pain is the first sign of cancer and, while pain can be present at any time, the frequency and intensity of pain tend to increase with advancing stages of the disease. Thus, between 75 and 90% of patients with metastatic or advanced-stage cancer will experience significant cancer-induced pain. One major unanswered question is why cancer pain increases and frequently becomes more difficult to fully control with disease progression. ⋯ These results suggest that cancer cells and their associated stromal cells release nerve growth factor (NGF), which induces a pathological remodeling of sensory and sympathetic nerve fibers. This pathological remodeling of the peripheral nervous system then participates in driving cancer pain. Similar to therapies that target the cancer itself, the data presented here suggest that, the earlier therapies blocking this pathological nerve remodeling are initiated, the more effective the control of cancer pain.
-
Spinal nerves and their associated dorsal root ganglion (DRG) cells can be subject to mechanical deformation and hypoxia associated with pathology such as disc herniation, spinal stenosis and spine trauma. There is very limited information on the response of adult DRG neurons to such stressors. In this study we used an in vitro approach to examine the response of adult DRG cells to (a) mechanical, hypoxic, and combined injuries; and (b) to compare the effects on injury on nociceptive and non-nociceptive neurons, as well as on non-neuronal cells. ⋯ Total cell death in response to mechanical injury or hypoxia was similar in both non-nociceptive (neurofilament, NF-200 immunoreactive) and nociceptive (calcitonin gene-related peptide, CGRP immunoreactive) neurons, but apoptosis (assessed by activated caspase-3 immunostaining) was significantly higher in CGRP than NF-200 neurons. Surprisingly, cell death of non-peptidergic nociceptors (identified by Griffonia simplicifolia IB4 lectin binding) was already high in control cultures, and was not increased further by either mechanical stretch or hypoxia. These results provide detailed information on the response of adult DRG subpopulations to hypoxia and mechanical strain, and describe in vitro models that could be useful for screening potential neuroprotective agents.
-
Impairments in executive function and cognitive control are a common feature of neuropsychiatric and neurodegenerative disorders. A promising behavioral paradigm for elucidating the neural mechanisms of executive function is extradimensional/intradimensional (ED/ID) shifting, which places demands on executive function by requiring the adjustment of behavioral responses based on affective or attentional information. ⋯ However, increased Fos-LI was also present in rats that performed a yoked number of additional control discrimination trials, without affective or attentional shifting. These observations suggest that cortical networks required for affective and attentional shifting are also activated during comparable discrimination tasks that do not require shifting, consistent with a role for these networks in monitoring ongoing behavior even in situations in which adaptation to changing behavioral demands is not required.
-
Drugs that selectively inhibit the serotonin transporter (SERT) are widely prescribed for treatment of depression and a range of anxiety disorders. We studied the time course of changes in tryptophan hydroxylase (TPH) in four raphe nuclei after initiation of two different SERT inhibitors, citalopram and fluoxetine. In the first experiment, groups of Sprague-Dawley rats received daily meals of rice pudding either alone (n=9) or mixed with citalopram 5 mg/kg/day (n=27). ⋯ As was observed with citalopram, fluoxetine induced significant reductions of TPH cell counts in the DRN (39%), MRN (38%) and RMN (41%), with no significant differences in the CLN. These results indicate that SERT inhibition can alter the regulation of TPH, the rate limiting enzyme for serotonin biosynthesis. This persistent and regionally specific downregulation of serotonin biosynthesis may account for some of the clinical withdrawal symptoms associated with drugs that inhibit SERT.