Neuroscience
-
The purposes of this study were to clarify the involvement of P-glycoprotein in the absorption of levosulpiride in knockout mice that lack the Abcb1a/ 1b gene, and to evaluate the relationship between genetic polymorphisms in ABCB1 (exon 12, 21 and 26) and levosulpiride disposition in healthy subjects. The plasma and brain samples were obtained after oral administration (10 microg/g) of levosulpiride to abcb1a/1b(-/-) and wild-type mice (n=3 approximately 6 at each time point). The average brain-to-plasma concentration ratio and blood-brain barrier partitioning of levosulpiride were 2.3- and 2.0-fold higher in Abcb1a/1b(-/-) mice than in wild-type mice, respectively. ⋯ The subjects were evaluated for polymorphisms of the ABCB1 exon 12 C1236T, exon 21 G2677A/T (Ala893Ser/Thr) and exon 26 C3435T using polymerase chain reaction restriction fragment length polymorphism. The PK parameters (AUC(0-4h), AUC(0-infinity) and C(max.)) of ABCB1 2677TT and 3435TT subjects were significantly higher than those of subjects with at least one wild-type allele (P<0.05). The results indicate that levosulpiride is a P-glycoprotein substrate in vivo, which is supported by the effects of SNPs 2677G>A/T in exon 21 and 3435C>T in exon 26 of ABCB1 on levosulpiride disposition.
-
Diffuse axonal injury (DAI) is one of the most common and important pathologic features of human traumatic brain injury (TBI), accounting for high mortality and development of persistent post-traumatic neurologic sequelae. Although a relatively high number of therapies have been shown to be effective in experimental models, there are currently few treatments that are effective for improving the prognosis of clinical DAI. A major reason is the failure of current models to validly reproduce the pathophysiological characteristics observed after clinical DAI. ⋯ Ultrastructural studies gave further insights into the presence and progression of axonal injury. All injured rats exhibited transient physiological dysfunction, as well as immediate and dramatic neurological impairment that still persisted at 14 days after injury. These results suggest that this model reproduced the major pathophysiological changes analogous to those observed after severe clinical TBI and provides an attractive vehicle for experimental brain injury research.