Neuroscience
-
Prolonged nutrient limitation has been extensively studied due to its positive effects on life span. However, less is understood of how brief periods of starvation can have lasting consequences. In this study, we used genetics, biochemistry, pharmacology and behavioral analysis to show that after a limited period of starvation, the synthesis of egl-2-encoded ether-a-go-go (EAG) K+ channels and its C-terminal modifications by unc-43-encoded CaMKII have a perduring effect on C. elegans male sexual behavior. ⋯ In young adult males, spastic contractions occur in cholinergic-activated sex muscles that lack functional unc-103-encoded ERG-like K+ channels. Promoting EGL-2 and UNC-43 interactions in unc-103 mutant adult males by starving them for a few hours reduce spastic muscle contractions over multiple days. Although transient starvation during early adulthood has a hormetic effect of suppressing mutation-induced muscle contractions, the treatment reduces the ability of young wild-type (WT) males to compete with well-fed cohorts in siring progeny.
-
Brain networks and cognition have recently begun to attract attention: studies suggest that more efficiently wired resting-state brain networks are indeed correlated with better cognitive performance. "Small-world" brain networks combine local segregation with global integration, hereby subserving information processing. Furthermore, recent studies implicate that gender effects may be present in both network dynamics and its correlations with cognition. This study reports on the relation between resting-state functional brain topology with overall and domain-specific cognitive performance in healthy participants and possible gender differences herein. ⋯ There were no significant correlations between network topology and cognitive functioning in females. In contrast, higher cognitive scores in men were associated with increased theta band clustering and small-worldness. These results provide further evidence for the value of functional brain network topology for cognitive functioning and suggest that gender is an important factor in this respect.
-
Comparative Study
Excitotoxic lesions of the nucleus paragigantocellularis facilitate male sexual behavior but attenuate female sexual behavior in rats.
Little is known regarding the descending inhibitory control of genital reflexes such as ejaculation and vaginal contractions. The brainstem nucleus paragigantocellularis (nPGi) projects bilaterally to the lumbosacral motoneuron pools that innervate the genital musculature of both male and female rats. Electrolytic nPGi lesions facilitate ejaculation in males, leading to the hypothesis that the nPGi is the source of descending inhibition to genital reflexes. ⋯ However, post-reinforcement, nPGi-lesioned females did not differ in the percentage of time spent in the non-reinforced chamber versus the reinforced chamber, suggesting a weakened CPP for aVCS. nPGi lesions in females reduced sexual behavior-induced Fos expression throughout the hypothalamus and amygdala. Taken together, these results suggest that while nPGi lesions in males facilitate copulation, such lesions in females attenuate several aspects of sexual behavior resulting in a reduction in the rewarding value of copulation that may be mediated by nPGi control of genital reflexes. This work has important implications for the understanding and treatment of sexual dysfunction in people including delayed/premature ejaculation, involuntary vaginal spasms, and pain during intercourse.
-
Compensated respiratory acidosis has been observed in a significant number of patients with active vestibular disease. We therefore hypothesized that the inner ear may play an unrecognized integral role in respiratory control. To test this premise, we investigated whether mice with induced inner ear injury demonstrated any alteration in their respiratory response to inhaled carbon dioxide (CO(2)). ⋯ Inner ear damage significantly reduces the respiratory response to CO(2) inhalation. In addition to the established role of the inner ear organ in hearing and balance, this alludes to an unidentified function of the inner ear and its interconnecting neuronal pathways in respiratory regulation. This finding may offer valuable new clues for disease states with abnormal respiratory control where inner ear dysfunction may be present.
-
Clinical and experimental evidence demonstrates that endocannabinoids play either beneficial or adverse roles in many neurological and psychiatric disorders. Their medical significance may be best explained by the emerging concept that endocannabinoids are essential modulators of synaptic transmission throughout the central nervous system. However, the precise molecular architecture of the endocannabinoid signaling machinery in the human brain remains elusive. ⋯ However, as observed previously in rodent hippocampus, MGL was enriched in axon terminals instead of postsynaptic structures at the ultrastructural level. Taken together, these findings demonstrate the post- and presynaptic segregation of primary enzymes responsible for synthesis and elimination of 2-AG, respectively, in the human hippocampus. Thus, molecular architecture of the endocannabinoid signaling machinery supports retrograde regulation of synaptic activity, and its similar blueprint in rodents and humans further indicates that 2-AG's physiological role as a negative feed-back signal is an evolutionarily conserved feature of excitatory synapses.