Neuroscience
-
The sigma receptor 1 (σR1) has been shown to modulate the activity of several voltage- and ligand-gated channels. Using patch-clamp techniques in rat retinal slice preparations, we demonstrated that activation of σR1 by SKF10047 (SKF) or PRE-084 suppressed N-methyl-D-aspartate (NMDA) receptor-mediated current responses from both ON and OFF type ganglion cells (GCs), dose-dependently, and the effect could be blocked by the σR1 antagonist BD1047 or the σR antagonist haloperidol. The suppression by SKF of NMDA currents was abolished with pre-incubation of the G protein inhibitor GDP-β-S or the Gi/o activator mastoparan. ⋯ Furthermore, application of protein kinase C inhibitors Bis IV and Gö6976 eliminated the SKF effect. These results suggest that the suppression of NMDA responses of rat retinal GCs caused by the activation of σR1 may be mediated by a distinct [Ca2+]i-dependent PLC-PKC pathway. This effect of SKF could help ameliorate malfunction of GCs caused by excessive stimulation of NMDA receptors under pathological conditions.
-
High caloric intake during early postnatal development can have long term consequences for the offspring. We previously reported that the adult offspring of dams fed a high-fat diet during the last week of gestation and throughout lactation display blunted locomotor response to amphetamine (AMP) and reduced sensitization to the drug compared to offspring of control diet dams. Here, we report that the subsensitivity of high-fat offspring to AMP's locomotor stimulant action reflects, at least in part, altered regulation of nucleus accumbens (NAc) dopamine (DA) transmission. ⋯ The magnitude of locomotor response to D(2/3) receptor activation (with quinpirole) was greater in high-fat than in control animals despite having comparable postsynaptic D(2) mRNA levels in the NAc. Finally, while operant responding for a sugar-enriched food reward did not differ between diet groups, high-fat offspring displayed increased operant responding for a fat-enriched reward compared to controls. These findings add to mounting evidence that early life exposure to elevated dietary maternal fat can lead to long lasting changes in DA-mediated behavioral responses to stimulant drugs and fat-enriched foods.
-
Previous studies have demonstrated that pioglitazone (Piog), a peroxisome proliferator-activated receptor gamma (PPARγ) agonist, inhibits ischemia-induced brain injury. Piog has also been shown to exert anti-inflammatory effects by attenuation of nuclear factor-κB (NF-κB) activation after myocardial ischemia/reperfusion injury. Because NF-κB is known to play a major role in the pathophysiology of brain ischemia, the present study was undertaken to elucidate whether pioglitazone attenuates ischemic neuronal damage through PPARγ-mediated suppression of NF-κB apoptotic signaling pathway. ⋯ Pre-treatment with GW9662 blocked Piog-elicited reduction in infarction volume, the increase in protein levels of IκBα and p-ERK, the reduction in the nuclear translocation of NF-κB subunit p65 and the repression of p53 mRNA expression. In addition, Piog attenuated the OGD-induced neuronal damage and inhibited the OGD-induced increases in p- NF-κB p65 in neurons. The present findings suggest that Piog's neuroprotection appears to be associated with PPARγ-mediated suppression of NF-κB signaling pathway.
-
Subsecond fluctuations in dopamine (dopamine transients) in the nucleus accumbens are often time-locked to rewards and cues and provide an important learning signal during reward processing. As the mesolimbic dopamine system undergoes dynamic changes during adolescence in the rat, it is possible that dopamine transients encode reward and stimulus presentations differently in adolescents. However, to date no measurements of dopamine transients in awake adolescents have been made. ⋯ In contrast, brief interaction with another rat increased dopamine transients in both adolescent and adult rats. While this effect habituated in adults at a second interaction, it persisted in the adolescents. These data are the first demonstration of dopamine transients in adolescent rats and reveal an important divergence from adults in the occurrence of these transients that may result in differential learning about rewards.
-
Painful peripheral neuropathies produced by nerve trauma are accompanied by substantial axonal degeneration and by a response in spinal cord microglia that is characterized by hypertrophy and increased expression of several intracellular and cell-surface markers, including ionizing calcium-binding adapter molecule 1 (Iba1) and Cd11b (a complement receptor 3 antigen recognized by the OX42 antibody). The microglia response has been hypothesized to be essential for the pathogenesis of the neuropathic pain state. In contrast, the painful peripheral neuropathies produced by low doses of cancer chemotherapeutics do not produce degeneration of axons in the peripheral nerve, although they do cause partial degeneration of the sensory axons' distal-most tips, that is the intraepidermal nerve fibers that form the axons' terminal receptor arbors. ⋯ As expected, microglia hypertrophy and increased expression of Iba1 were pronounced in the nerve transection and CCI animals. However, there was no microglia hypertrophy or increased Iba1 staining in the animals treated with paclitaxel, vincristine, oxaliplatin, or ddC. These results suggest that the mechanisms that produce neuropathic pain after exposure to chemotherapeutics may be fundamentally different than those operating after nerve trauma.