Neuroscience
-
The R-enantiomer of isovaline, an analgesic amino acid, has a chemical structure similar to glycine and GABA. Although its actions on thalamic neurons are strychnine-resistant and independent of the Cl(-) gradient, R-isovaline increases membrane conductance for K(+). The purpose of this study was to determine if R-isovaline activated metabotropic GABA(B) receptors. ⋯ The R-isovaline-induced currents outlasted the fast baclofen responses and persisted for a 1-2-h period. Despite some similar actions, R-isovaline and baclofen do not act at identical GABA(B) receptor sites. The binding of R-isovaline and baclofen to the GABA(B) receptor may not induce the same conformational changes in receptor proteins or components of the intracellular signaling pathways.
-
In situ hybridization, quantitative reverse transcription polymerase chain reaction (RT-PCR), immunohistochemistry, and Western blot analysis were applied to study the changes in expression of the major nociceptive ion channel transient receptor potential vanilloid type 1 receptor (TRPV1) after the perineural application of capsaicin or nerve transection. In control rats, quantitative morphometric and statistical analyses of TRPV1 protein and mRNA expression in L5 dorsal root ganglion cells revealed distinct populations of small (type C) and small-to-medium (type B) neurons, which showed very high and moderate levels of TRPV1, whereas larger (type A) neurons mostly did not express this receptor. After either transection or capsaicin treatment of the sciatic nerve, immunohistochemistry and Western blotting demonstrated a massive (up to 80%) decrease in the proportion of TRPV1-immunoreactive neurons and TRPV1 protein at all postoperative survival times. ⋯ In accord with these findings, quantitative RT-PCR revealed a marked and significant recovery in TRPV1 mRNA after perineural capsaicin but not after nerve transection. These observations suggest the involvement of distinct cellular mechanisms in the regulation of the TRPV1 mRNA expression of damaged neurons, specifically triggered by the nature of the injury. The present findings imply that the antinociceptive and anti-inflammatory effects of perineurally applied capsaicin involve distinct changes in neuronal TRPV1 mRNA expression and long-lasting alterations in (post)translational regulation.
-
Layer II of the parasubiculum (PaS) receives excitatory synaptic input from the CA1 region of the hippocampus and sends a major output to layer II of the medial and lateral entorhinal cortex. The PaS also receives heavy cholinergic innervation from the medial septum, which contributes to the generation of theta-frequency (4-12 Hz) electroencephalographic (EEG) activity. Cholinergic receptor activation exerts a wide range of effects in other areas of the hippocampal formation, including membrane depolarization, changes in neuronal excitability, and suppression of excitatory synaptic responses. ⋯ Constant bath-application of the GABA(A) antagonist bicuculline (10 μM) failed to eliminate the suppression, indicating that the cholinergic suppression of fEPSPs is not due to increased inhibitory tone. The muscarinic receptor antagonist atropine (1 μM) blocked the suppression of fEPSPs, and the selective M(1)-preferring receptor antagonist pirenzepine (1 μM), but not the M(2)-preferring antagonist methoctramine (1-5 μM), also significantly attenuated the suppression. Therefore, cholinergic receptor activation suppresses excitatory synaptic input to layer II/III neurons of the PaS, and this suppression is mediated in part by M(1) receptor activation.
-
Pyramidal neurons of the neocortex are produced from progenitor cells located in the neocortical ventricular zone (VZ) and subventricular zone (SVZ) during embryogenesis. RP58 is a transcriptional repressor that is strongly expressed in the developing brain and plays an essential role in corticogenesis. The expression of RP58 is strictly regulated in a time-dependent and spatially restricted manner. ⋯ Using in utero electroporation, we demonstrate that RP58 gene promoter activity is first detected in a subpopulation of pin-like VZ cells, then prominently activated in migrating multipolar cells in the multipolar cell accumulation zone (MAZ) located just above the VZ. In dissociated primary cultured cortical neurons, RP58 promoter activity mimics in vivo expression patterns from a molecular standpoint that RP58 is expressed in a fraction of Sox2-positive progenitor cells, Ngn2-positive neuronal committed cells, and Tuj1-positive young neurons, but not in Dlx2-positive GABAergic neurons. Finally, we show that Cre recombinase expression under the control of the RP58 gene promoter is a feasible tool for conditional gene switching in post-mitotic multipolar migrating young neurons in the developing cerebral cortex.
-
Edaravone is a novel free radical scavenger that is clinically employed in patients with acute cerebral infarction. However, its effect on stroke-induced subventricular zone (SVZ) neurogenesis is largely unknown. In this study, we investigated the effect and underlying mechanism of edaravone administration on SVZ neurogenesis using a rat model of cerebral ischemia-reperfusion injury. ⋯ Treatment with edaravone not only mitigated cerebral infarct size (P<0.05) and neurological defects (P<0.05), but also decreased cell proliferation and neural progenitor cells in the ischemic ipsilateral SVZ (P<0.05). Additionally, edaravone reduced effectively ROS generation and HIF-1α as well as VEGF protein levels in the ischemic ipsilateral SVZ (P<0.05). These findings indicate that administration with edaravone, via repressing HIF-1α signaling pathway, inhibits SVZ neurogenesis in rats after cerebral ischemia-reperfusion injury.