Neuroscience
-
We investigated the role of inositol 1, 4, 5-trisphosphate receptors (IP3Rs) that were activated during preconditioning low-frequency afferent stimulation (LFS) in the subsequent induction of synaptic plasticity in CA1 neurons in hippocampal slices from mature guinea pigs. In standard perfusate, long-term potentiation (LTP) was induced in the field excitatory postsynaptic potential (EPSP) by the delivery of LFS (80 pulses at 1 Hz), and was reversed by an identical LFS applied 20 min later. ⋯ The excitatory postsynaptic current (EPSC) through NMDARs recorded from CA1 pyramidal neurons increased significantly 20 min after a single LFS and this increase was inhibited when the LFS was delivered in the presence of an IP3R antagonist or a Ca(2+)/calmodulin-dependent protein kinase II inhibitor. These results suggest that activation of IP3Rs by a preconditioning LFS results in postsynaptic protein phosphorylation and/or enhancement of NMDAR activation during a subsequent LFS, leading to reversal of LTP in the field EPSP in hippocampal CA1 neurons.
-
Comparative Study
Differential maturation of the molecular clockwork in the olfactory bulb and suprachiasmatic nucleus of the rabbit.
Recent studies suggest that the main olfactory bulb (OB) represents a functional circadian pacemaker. In many altricial mammals, during pre-visual stages of development the olfactory system plays a vital role in their survival. One remarkable example is the European rabbit; the newborns are normally raised in a dark nursery burrow, and the lactating female briefly visits her young approximately once every 24 h. ⋯ We report for the first time that Per1, Cry1, and Bmal1 are expressed in the OB of newborn and juvenile rabbits. In addition, the diurnal pattern of clock gene expression develops earlier in the OB than in the SCN of newborn rabbits. Given the early maturation of the molecular clockwork and the biological relevance of this structure during development, it is possible that the OB plays an important role in temporal regulation during pre-visual life in rabbits.
-
Human movements are quickly adjusted to variations of inertial load. However, this adjustment does not always imply a full compensation, so that kinematic movement characteristics vary. The present experiment served to explore the consequences of a complex dynamic transformation, implemented by a sliding first-order lever, on the endpoint distributions of goal-directed movements. ⋯ However, when the lever was used, the effect of the inertial anisotropy of the arm on movement amplitudes was reduced, accompanied by a longer movement time overall, in particular for movements with higher inertial load of the arm. These observations suggest an interaction of the use of internal models and impedance control in the presence of variable inertial loads. Most likely the influence of the dynamic transformation of the sliding lever is absorbed by increased joint impedance, which also reduces the influence of the inertial anisotropy of the arm which otherwise is (incompletely) compensated based on an internal model of the dynamic transformation of the arm.
-
Sensory input from the airways to suprapontine brain regions contributes to respiratory sensations and the regulation of respiratory function. However, relatively little is known about the central organization of this higher brain circuitry. We exploited the properties of the H129 strain of herpes simplex virus 1 (HSV-1) to perform anterograde transneuronal tracing of the central projections of airway afferent nerve pathways. ⋯ Vagotomy significantly reduced the number of infected cells within vagal sensory nuclei in the brainstem, confirming the main pathway of viral transport is through the vagus nerves. Sympathetic postganglionic neurons in the stellate and superior cervical ganglia were infected by 72 h, however, there was no evidence for retrograde transynaptic movement of the virus in sympathetic pathways in the central nervous system (CNS). These data demonstrate the organization of key structures within the CNS that receive afferent projections from the extrathoracic airways that likely play a role in the perception of airway sensations.
-
The α7* nicotinic acetylcholine receptor encoded by CHRNA7 (human)/Chrna7 (mice) regulates the release of both the inhibitory neurotransmitter GABA and the excitatory neurotransmitter glutamate in the hippocampal formation. A heterozygous (Het) deletion at 15q13.3 containing CHRNA7 is associated with increased risk for schizophrenia, autism, and epilepsy. Each of these diseases are characterized by abnormalities in excitatory and inhibitory hippocampal circuit function. ⋯ GAD-65 levels were significantly decreased in male and female Het C3H α7 mice, whereas GABA(A) receptors were significantly reduced only in male Het C3H α7 mice. No changes in GABA and GAT-1 levels were detected. These data suggest that reduced CHRNA7 expression may contribute to the abnormalities in hippocampal inhibitory circuits observed in schizophrenia, autism, and/or epilepsy.