Neuroscience
-
Preclinical as well as limited clinical studies indicate that ketamine, a non-competitive glutamate N-methyl-D-aspartate (NMDA) receptor antagonist, may exert a quick and prolonged antidepressant effect. It has been postulated that ketamine action is due to inhibition of NMDA and stimulation of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors. Here, we sought to determine whether ketamine would exert antidepressant effects in Wistar-Kyoto (WKY) rats, a putative animal model of depression and whether this effect would be associated with changes in AMPA/NMDA receptor densities in the hippocampus. ⋯ These results indicate a rapid and lasting antidepressant-like effect of a low ketamine dose in WKY rat model of depression. Moreover, the increase in AMPA/NMDA receptor density in the hippocampus could be a contributory factor to behavioral effects of ketamine. These findings suggest potential therapeutic benefit in simultaneous reduction of central NMDA and elevation of AMPA receptor function in treatment of depression.
-
Peripherally restricted analgesics are desirable to avoid central nervous system (CNS) side effects of opioids. Nonsteroidal anti-inflammatory drugs produce peripheral analgesia but have significant toxicity. GABA(B) receptors represent peripheral targets for analgesia but selective GABA(B) agonists like baclofen cross the blood-brain barrier. ⋯ In a mouse model of osteoarthritis, isovaline restored performance during forced exercise to baseline values. Immunohistochemical staining of cutaneous layers of the analgesic test site demonstrated co-localization of GABA(B1) and GABA(B2) receptor subunits on fine nerve endings and keratinocytes. Isovaline represents a new class of peripherally restricted analgesics without CNS effects, mediated by cutaneous GABA(B) receptors.
-
Although short-term synaptic plasticity (STP) is ubiquitous in neocortical synapses its functional role in neural computations is not well understood. Critical to elucidating the function of STP will be to understand how STP itself changes with development and experience. Previous studies have reported developmental changes in STP using acute slices. ⋯ Importantly, despite the change in the PPR we did not observe changes in the time constant governing STP. Since these experiments were conducted in vitro our results indicate that the shift in STP does not depend on in vivo sensory experience. Although sensory experience may shape STP, we suggest that developmental shifts in STP are at least in part ontogenetically determined.
-
It is well known that after cerebral ischemia, brain suffers blood flow changes over time that have been correlated with inflammation, angiogenesis and functional recovery processes. Nevertheless, post-ischemic spatiotemporal changes of brain perfusion have not been fully investigated to date. Here we tested whether PET with [¹³N]ammonia would evidence the perfusion changes presented by different brain regions in an experimental model of brain ischemia. ⋯ [¹³N]ammonia shows hemodynamic changes after stroke involving hyperperfusion that might be related to angiogenesis and functional recovery. Long-term blood hyperperfusion is found both in ischemic and remote areas to infarction. These results may contribute to a better understanding of the evolution of cerebral ischemic lesion in animal models.
-
During exercise, intense brain activity orchestrates an increase in muscle tension. Additionally, there is an increase in cardiac output and ventilation to compensate the increased metabolic demand of muscle activity and to facilitate the removal of CO(2) from and the delivery of O(2) to tissues. Here we tested the hypothesis that a subset of pontomedullary and hypothalamic neurons could be activated during dynamic acute exercise. ⋯ In summary, we show for the first time that after acute exercise there is an intense activation of brain areas crucial for cardiorespiratory control. Possible involvement of the central command mechanism should be considered. Our results suggest whole brain-specific mobilization to correct and compensate the homeostatic changes produced by acute exercise.