Neuroscience
-
The aim of this study was to test the insulin-like growth factor-I (IGF-I) as a neuroprotective agent in a rat model for ischemic stroke and to compare its neuroprotective effects in conscious normotensive and spontaneously hypertensive rats. The effects of subcutaneous IGF-I injection were investigated in both rat strains using the endothelin-1 rat model for ischemic stroke. Motor-sensory functions were measured using the Neurological Deficit Score. ⋯ Furthermore, IGF-I significantly reduced microglial activation in the cortex of hypertensive rats, but not in normotensive rats. More detailed studies are required to find out whether the reduction by IGF-I of microglial activation contributes to an impairment IGF-I treatment efficacy. Indeed, we have shown before that microglia in hypertensive rats have different properties compared to those in control rats, as they exhibit a reduced responsiveness to ischemic stroke and lipopolysaccharide.
-
Hyperprolinemia is an inherited disorder of proline metabolism and hyperprolinemic patients can present neurological manifestations, such as seizures, cognitive dysfunctions, and schizoaffective disorders. However, the mechanisms related to these symptoms are still unclear. In the present study, we evaluated the in vivo and in vitro effects of proline on acetylcholinesterase (AChE) activity and gene expression in the zebrafish brain. ⋯ When assessed in vitro, proline did not promote significant changes in AChE activity. Altogether, these data indicate that the enzyme responsible for the control of acetylcholine levels might be altered after proline exposure in the adult zebrafish. These findings contribute for better understanding of the pathophysiology of hyperprolinemia and might reinforce the use of the zebrafish as a complementary vertebrate model for studying inborn errors of amino acid metabolism.
-
Phrenic long-term facilitation (pLTF) is a form of serotonin-dependent respiratory plasticity induced by acute intermittent hypoxia (AIH). pLTF requires spinal Gq protein-coupled serotonin-2 receptor (5-HT2) activation, new synthesis of brain-derived neurotrophic factor (BDNF) and activation of its high-affinity receptor, TrkB. Intrathecal injections of selective agonists for Gs protein-coupled receptors (adenosine 2A and serotonin-7; 5-HT7) also induce long-lasting phrenic motor facilitation via TrkB "trans-activation." Since serotonin released near phrenic motor neurons may activate multiple serotonin receptor subtypes, we tested the hypothesis that 5-HT7 receptor activation contributes to AIH-induced pLTF. A selective 5-HT7 receptor antagonist (SB-269970, 5mM, 12 μl) was administered intrathecally at C4 to anesthetized, vagotomized and ventilated rats prior to AIH (3, 5-min episodes, 11% O2). ⋯ Similar to 5-HT7 receptor inhibition, spinal PKA inhibition (KT-5720, 100 μM, 15 μl) enhanced pLTF (99 ± 15% 60 min post-AIH; p<0.05). Conversely, PKA activation (8-br-cAMP, 100 μM, 15 μl) blunted pLTF versus control rats (16 ± 5% versus 45 ± 6% 60 min post-AIH; p<0.05). These findings suggest a novel mechanism whereby spinal Gs protein-coupled 5-HT7 receptors constrain AIH-induced pLTF via PKA activity.
-
Neurotrophic factors delivered from target muscles are essential for motoneuronal survival, mainly during development and early postnatal maturation. It has been shown that the disconnection between motoneurons and their innervated muscle by means of axotomy produces a vast neuronal death in neonatal animals. In the present work, we have evaluated the effects of different neurotrophic factors on motoneuronal survival after neonatal axotomy, using as a model the motoneurons innervating the extraocular eye muscles. ⋯ The administration of these neurotrophic factors, with the exception of NT-3, also prevented the loss of the cholinergic phenotype observed by 10 days after axotomy. At the dosage applied, NGF and GDNF were revealed again as the most effective neuroprotective agents against the axotomy-induced decrease in ChAT. Two remarkable findings highlighted in the present work that contrasted with other motoneuronal types after neonatal axotomy: first, the extremely high efficacy of NGF as a neuroprotective agent and, second, the long-lasting effects of neurotrophic administration on cell survival and ChAT expression in extraocular motoneurons.
-
In the adult rabbit and mouse retina, about 30% of the ON-OFF direction selective ganglion cells (DSGCs) are coupled via gap junctions. In early postnatal rabbit retinas, a greater proportion of morphological ON-OFF DSGCs shows coupling with a larger number of nearby somas. It is not clear whether the coupled ON-OFF DSGCs belong to the same subtype, or how coupling patterns change during development. ⋯ Therefore, a rapid decoupling process takes place in DSGCs around eye opening. Light deprivation delayed but did not halt the decoupling process. By using a transgenic mouse line in which green fluorescent protein (GFP) is selectively expressed in DSGCs with PDs to posterior and by performing in situ hybridization of cadherin-6, a marker for the DSGCs with PDs to superior and inferior, we showed that heterologous coupling existed between DSGCs with PDs to anterior and posterior till P12, but this heterologous coupling never spread to DSGCs positive for cadherin-6.