Neuroscience
-
Considerable evidence indicates that dopamine (DA) influences tissue plasminogen activator (tPA)-mediated proteolytic processing of the precursor of brain-derived neurotrophic factor (proBDNF) into mature BDNF (mBDNF). However, specific roles in this process for the dopamine D3 receptor (D3R) and the underlying molecular mechanisms are yet to be fully characterized. In the present study, we hypothesized that D3R deletion could influence tPA activity in the prefrontal cortex and hippocampus. ⋯ In addition, when compared to wild-type controls, D3(-/-) mice exhibited increased basal activation of the canonical cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA)-driven Akt/cAMP-response element-binding protein (CREB) signaling cascade, as determined by the increased Akt phosphorylation both at Thr304 and Ser473 residues, of DA and cAMP-regulated protein of 32kDa (DARPP-32) at Thr34 and a phosphorylation state-dependent inhibition of glycogen synthetase kinase-3β (GSK-3β) at Ser9, a substrate of Akt whose constitutive function impairs normal CREB transcriptional activity through phosphorylation at its Ser129 residue. Accordingly, CREB phosphorylation at Ser133 was significantly increased in D3(-/-) mice, whereas the GSK-3β-dependent phosphorylation at Ser129 was diminished. Altogether, our finding reveals that mice lacking D3Rs show enhanced tPA proteolytic activity on BDNF which may involve, at least in part, a potentiated Akt/CREB signaling, possibly due to hindered GSK-3β activity.
-
Phrenic long-term facilitation (pLTF) is a form of serotonin-dependent respiratory plasticity induced by acute intermittent hypoxia (AIH). pLTF requires spinal Gq protein-coupled serotonin-2 receptor (5-HT2) activation, new synthesis of brain-derived neurotrophic factor (BDNF) and activation of its high-affinity receptor, TrkB. Intrathecal injections of selective agonists for Gs protein-coupled receptors (adenosine 2A and serotonin-7; 5-HT7) also induce long-lasting phrenic motor facilitation via TrkB "trans-activation." Since serotonin released near phrenic motor neurons may activate multiple serotonin receptor subtypes, we tested the hypothesis that 5-HT7 receptor activation contributes to AIH-induced pLTF. A selective 5-HT7 receptor antagonist (SB-269970, 5mM, 12 μl) was administered intrathecally at C4 to anesthetized, vagotomized and ventilated rats prior to AIH (3, 5-min episodes, 11% O2). ⋯ Similar to 5-HT7 receptor inhibition, spinal PKA inhibition (KT-5720, 100 μM, 15 μl) enhanced pLTF (99 ± 15% 60 min post-AIH; p<0.05). Conversely, PKA activation (8-br-cAMP, 100 μM, 15 μl) blunted pLTF versus control rats (16 ± 5% versus 45 ± 6% 60 min post-AIH; p<0.05). These findings suggest a novel mechanism whereby spinal Gs protein-coupled 5-HT7 receptors constrain AIH-induced pLTF via PKA activity.
-
The role of spinal cannabinoid systems in neuropathic pain of streptozotocin (STZ)-induced diabetic mice was studied. In normal mice, injection of the cannabinoid receptor agonist WIN-55,212-2 (1 and 3μg, i.t.) dose-dependently prolonged the tail-flick latency, whereas there were no changes with the injection of either cannabinoid CB1 (AM 251, 1 μg, i.t.) or CB2 (AM 630, 4 μg, i.t.) receptor antagonists. AM 251 (1 μg, i.t.), but not AM 630 (4 μg, i.t.), significantly inhibited the prolongation of the tail-flick latency induced by WIN-55,212-2 (3 μg, i.t.). ⋯ The protein levels of cannabinoid CB1 receptors, CB2 receptors and diacylglycerol lipase α (DGL-α), the enzyme that synthesizes endocannabinoid 2-arachidonoylglycerol, in the spinal cord were examined using Western blotting. The protein levels of both cannabinoid CB1 and CB2 receptors were increased in STZ-induced diabetic mice, whereas the protein level of DGL-α was significantly decreased. These results indicate that spinal cannabinoid systems are changed in diabetic mice and suggest that cannabinoid CB2 receptor agonists might have an ability to recover diabetic neuropathic pain.
-
Certain patterns of neural activity can induce N-methyl-D-aspartic acid receptor (NMDAR)-dependent synaptic plasticity, one of the important foundations of memory. Here, we report that a patterned high-frequency stimulation (PHS) induces rat hippocampal long-term depression (LTD) in an NMDAR-independent manner that requires coactivation of GABA(A)Rs and muscarinic acetylcholine receptors (mAChRs), and endocytosis of AMPARs. Thus, we disclose that a patterned high-frequency stimulation triggers GABAAR and mAChR-dependent LTD in the hippocampus.
-
β-Amyloid (Aβ) peptides are derived from the sequential cleavage of the amyloid precursor protein (APP). They are enriched in plaques present in Alzheimer's brains and thus play important roles in the pathogenesis of this disease. APP is also known to be expressed in the neurons of dorsal root ganglion (DRG) and contributes to neuronal survival and axonal growth during development. ⋯ In parallel with reduced pain sensitivity, the expression of pain mediators such as substance P, calcitonin gene-related peptide and transient receptor potential vanilloid-1 was significantly reduced in L4-6 DRG of CRND8 mice. Although i.pl. injection of CFA induced a rather similar pattern of inflammatory pain in 3-month-old CRND8 mice and their wild-type littermates, recovery from inflammatory pain seemed faster in 12-month-old CRND8 mice than wild-type mice. These findings suggest that APP and Aβ peptides suppress both nociception and inflammatory pain and are likely involved in blunt pain perception of Alzheimer's patients in clinical settings.