Neuroscience
-
The rostral ventrolateral medulla (RVLM) contains the presympathetic neurons involved in cardiovascular regulation that has been implicated as one of the most important central sites for the antihypertensive action of moxonidine (an α2-adrenergic and imidazoline agonist). Here, we sought to evaluate the cardiovascular effects produced by moxonidine injected into another important brainstem site, the commissural nucleus of the solitary tract (commNTS). Mean arterial pressure (MAP), heart rate (HR), splanchnic sympathetic nerve activity (sSNA) and activity of putative sympathoexcitatory vasomotor neurons of the RVLM were recorded in conscious or urethane-anesthetized, and artificial ventilated male Wistar rats. ⋯ In the sham group, moxonidine (20 nmol/1 μl) injected into 4th V decreased MAP and HR. The hypotension but not the bradycardia produced by moxonidine into the 4th V was reduced in acute (1 day) commNTS-lesioned rats. These data suggest that moxonidine can certainly act in other brainstem regions, such as commNTS to produce its beneficial therapeutic effects, such as hypotension and reduction in sympathetic nerve activity.
-
Peptide analog of thymulin (PAT) has been shown to have anti-hyperalgesic and anti-inflammatory properties in animal models of inflammation. Recent reports suggest that the peripheral cholinergic system has an anti-inflammatory role mediated by α7-nicotinic acetylcholine receptor (α7-nAChR). Our aim is to investigate whether the action of PAT is mediated, via the cholinergic pathway. ⋯ The behavioral and electrophysiological observations described in this report demonstrate that PAT mediates, at least partially, its anti-inflammatory action by potentiating the α7-nAChR. These results indicate that PAT has a potential for new therapeutic applications as anti-inflammatory and analgesic agent.
-
Here, we have translated from the rat to the non-human primate a unilateral lumbosacral injury as a model for cauda equina injury. In this morphological study, we have investigated retrograde effects of a unilateral L6-S2 ventral root avulsion (VRA) injury as well as the long-term effects of Wallerian degeneration on avulsed ventral roots at 6-10 months post-operatively in four adult male rhesus monkeys. Immunohistochemistry for choline acetyl transferase and glial fibrillary acidic protein demonstrated a significant loss of the majority of the axotomized motoneurons in the affected L6-S2 segments and signs of an associated astrocytic glial response within the ventral horn of the L6 and S1 spinal cord segments. ⋯ In summary, a lumbosacral VRA injury resulted in retrograde motoneuron loss and astrocytic glial activation in the ventral horn. Surprisingly, the Wallerian degeneration of motor axons in the avulsed ventral roots was followed by a repopulation of the avulsed roots by small myelinated and unmyelinated fibers. We speculate that the small axons may represent sprouting or axonal regeneration by primary afferents or autonomic fibers.
-
Long-lasting pain may partly be a consequence of ongoing neuroinflammation, in which astrocytes play a significant role. Following noxious stimuli, increased inflammatory receptor activity, influences in Na(+)/K(+)-ATPase activity and actin filament organization occur within the central nervous system. ⋯ We found that the combination of (1) endomorphin-1, an opioid agonist that stimulates the Gi/o protein of the μ-opioid receptor; (2) naloxone, an opioid antagonist that inhibits the Gs protein of the μ-opioid receptor at ultralow concentrations; and (3) levetiracetam, an anti-epileptic agent that counteracts the release of IL-1β, managed to activate the Gi/o protein and Na(+)/K(+)-ATPase activity, inhibit the Gs protein, and decrease the release of IL-1β. The cell functions of astrocytes in an inflammatory state were virtually restored to their normal non-inflammatory state and it could be of clinical significance and may be useful for the treatment of long-term pain.
-
Central nervous system neurons fail to regenerate after birth, which greatly hampers the effective treatment of many neurodegenerative diseases. Neurons differentiated from induced pluripotent stem cells have been considered a possible option for cell-based therapies. Recent discoveries have revealed that fibroblasts can be directly converted into neurons without a transition through a pluripotent state. ⋯ The reprogramming mediated by adenoviruses occurs much sooner than that mediated by lentiviruses. Furthermore, the induced retinal ganglion-like cells that are produced via adenoviral gene delivery are free of exogenous gene integration. Retinal ganglion-like cells that are induced by adenoviruses demonstrate great potential applicability in clinical therapy and provide a novel platform for the research of retinal degenerative diseases.