Neuroscience
-
The neural correlates of perceptual load induced attentional selection were investigated in an functional magnetic resonance imaging (fMRI) experiment in which attentional selection was manipulated through the variation of perceptual load in target search. Participants searched for a vertically or horizontally oriented bar among heterogeneously (the high load condition) or homogeneously (the low load condition) oriented distractor bars in the central display, which was flanked by a vertical or horizontal bar presented at the left or the right periphery. The search reaction times were longer when the central display was of high load than of low load, and were longer when the flanker was incongruent than congruent with the target. ⋯ Anterior cingulate cortex (ACC) was more activated for the incongruent than for the congruent trials. Moreover, ACC and bilateral anterior insula were sensitive to the interaction between perceptual load and flanker congruency such that the activation differences between the incongruent and congruent conditions were significant in the low, but not in the high load condition. These results are consistent with the claim that ACC and bilateral anterior insula may exert executive control by selectively biasing processing in favor of task-relevant information and this biasing depends on the resources currently available to the control system.
-
Neuroendocrine secretion often requires prolonged voltage-gated Ca(2+) entry; however, the ability of Ca(2+) from intracellular stores, such as endoplasmic reticulum or mitochondria, to elicit secretion is less clear. We examined this using the bag cell neurons, which trigger ovulation in Aplysia by releasing egg-laying hormone (ELH) peptide. Secretion from cultured bag cell neurons was observed as an increase in plasma membrane capacitance following Ca(2+) influx evoked by a 5-Hz, 1-min train of depolarizing steps under voltage-clamp. ⋯ Employing GTP-γ-S to interfere with endocytosis delayed recovery (presumed membrane retrieval) of the capacitance change following FCCP, but not the train. Finally, secretion was correlated with reproductive behavior, in that neurons isolated from animals engaged in egg-laying presented a greater train-induced capacitance elevation vs quiescent animals. The bag cell neuron capacitance increase is consistent with peptide secretion requiring high Ca(2+), either from influx or stores, and may reflect the all-or-none nature of reproduction.
-
In Parkinson's disease (PD) levodopa-associated changes in the power and long-range temporal correlations of beta oscillations have been demonstrated, yet the presence and modulation of genuine connectivity in local field potentials (LFP) recorded from the subthalamic nucleus (STN) remains an open question. The present study investigated LFP recorded bilaterally from the STN at wakeful rest in ten patients with PD after overnight withdrawal of levodopa (OFF) and after a single dose levodopa administration (ON). We utilized connectivity measures being insensitive to volume conduction (functional connectivity: non-zero imaginary part of coherency; effective connectivity: phase-slope index). ⋯ The OFF-ON differences in functional connectivity were correlated with the levodopa-induced improvement in clinical Unified Parkinson's Disease Rating Scale scores. We hypothesize that regional neuronal interactions, as reflected in STN-LFP connectivity, might represent a basis for the intra-nuclear spatial specificity of deep brain stimulation. Moreover, our results suggest the potential use of volume conduction-insensitive measures of connectivity in STN-LFP as a marker of clinical motor symptoms in PD.
-
Although extensive evidence demonstrates that repeated administration of amphetamine (AMPH) induces behavioral and neurochemical sensitization, the influence of the developmental timing of AMPH administration is unknown. This is an important issue to address because it could help clarify the influence of early drug exposure on neuronal plasticity and the involvement of dopaminergic sensitization in the etiopathology of neuropsychiatric disorders. ⋯ We found that peri-pubertal treatment with AMPH induces long-lasting changes in the expression of bdnf and of activity-regulated genes in the hippocampus and in the prefrontal/frontal cortex, and leads to alterations of their short-term modulation in response to a subsequent acute AMPH challenge. These data suggest that AMPH exposure in peri-puberty may negatively affect the maturation of brain structures, such as the prefrontal cortex, which facilitate the development of dopamine sensitization and may contribute to dopamine-dependent behavioral dysfunctions and molecular alterations in adulthood.
-
Blood-brain barrier (BBB) dysfunction is a feature of many neurodegenerative disorders. The mechanisms and interactions between astrocytes, extracellular matrix and vascular endothelial cells in regulating the mature BBB are poorly understood. We have previously shown that transitory glial fibrillary acidic protein (GFAP)-astrocyte loss, induced by the systemic administration of 3-chloropropanediol, leads to reversible disruption of tight junction complexes and BBB integrity to a range of markers. ⋯ In addition, the extracellular matrix, as visualized by laminin and fibronectin, underwent extensive reversible remodeling and perivascular CD169 macrophages become abundant throughout the lesioned inferior colliculus. At a time that GFAP-astrocytes repopulated the lesion area and tight junction proteins were returned to paracellular domains, the extracellular matrix and leukocyte profiles normalized and resembled profiles seen in control tissue. This study supports the hypothesis that a combination of paracellular adherens junctional proteins, remodeled basement membrane and the presence of perivascular leukocytes provide a temporary barrier to limit the extravasation of macromolecules and potentially neurotoxic substances into the brain parenchyma until tight junction proteins are restored to paracellular domains.