Neuroscience
-
While considerable effort has been made to investigate the neural mechanisms of pain, much less effort has been devoted to itch, at least until recently. However, itch is now gaining increasing recognition as a widespread and costly medical and socioeconomic issue. This is accompanied by increasing interest in the underlying neural mechanisms of itch, which has become a vibrant and rapidly-advancing field of research. The goal of the present forefront review is to describe the recent progress that has been made in our understanding of itch mechanisms.
-
Postural support alters anticipatory postural adjustments (APAs). Efficient adaptation to changes in postural support in reactive and centrally initiated postural synergies is impaired in Parkinson's disease (PD). This study examined whether APAs are affected differently by familiar and novel supports in people with PD, ON and OFF levodopa. ⋯ Controls and PD patients in the OFF state further refined the postural strategy with practice as evidenced by changes in amplitude of vertical ground reaction forces and forces applied to support apparatus within conditions between the initial and final trials. In the ON state, people with PD failed to refine the use of postural supports in any condition. The results suggest that immediate postural adaptation is intact in people with PD and unaffected by levodopa administration but the ability to refine postural adaptations with task experience is compromised by dopamine therapy.
-
Focal cortical injuries are well known to cause changes in function and excitability of the surviving cortical areas but the cellular correlates of these physiological alterations are not fully understood. In the present study we employed a well established ex vivo-in vitro model of focal laser lesions in the rat visual cortex and we studied membrane and firing properties of the surviving layer 2/3 pyramidal neurons. Patch-clamp recordings, performed in the first week post-injury, revealed an increased input resistance, a depolarized spike threshold as well as alterations in the firing pattern of neurons in the cortex ipsilateral to the lesion. ⋯ Conversely, application of glutamatergic or GABAA receptor blockers reduced the observed alterations and GABAB receptor blockers abolished the differences completely. All together the present findings suggest that changes in synaptic receptors function, following focal cortical injuries, can modulate membrane and firing properties of layer 2/3 pyramidal neurons. This previously unknown functional interplay between synaptic and membrane properties may constitute a novel cellular mechanism to explain alterations in neuronal network function and excitability following focal cortical injuries.
-
Gamma oscillations have long been considered to emerge late in development. However, recent studies have revealed that gamma oscillations are transiently expressed in the rat barrel cortex during the first postnatal week, a "critical" period of sensory-dependent barrel map formation. The mechanisms underlying the generation and physiological roles of early gamma oscillations (EGOs) in the development of thalamocortical circuits will be discussed in this review. ⋯ EGOs facilitate the precise synchronization of topographically aligned thalamic and cortical neurons. The multiple replay of sensory input during EGOs supports long-term potentiation at thalamocortical synapses. We suggest that this early form of gamma oscillations, which is mechanistically different from adult gamma oscillations, guides barrel map formation during the critical developmental period.