Neuroscience
-
Huntington's disease (HD) is an autosomal dominant tandem repeat expansion disorder involving cognitive, psychiatric and motor symptoms. The expanded trinucleotide (CAG) repeat leads to an extended polyglutamine tract in the huntingtin protein and a subsequent cascade of molecular and cellular pathogenesis. One of the key features of neuropathology, which has been shown to precede the eventual loss of neurons in the cerebral cortex, striatum and other areas, are changes to synapses, including the dendritic protrusions known as spines. ⋯ In mouse models, synaptic and cortical plasticity deficits have been directly correlated with the onset of cognitive deficits, implying a causal link. Furthermore, following the discovery that environmental enrichment can delay onset of affective, cognitive and motor deficits in HD transgenic mice, specific synaptic molecules shown to be dysregulated by the polyglutamine-induced toxicity were also found to be beneficially modulated by environmental stimulation. This identifies potential molecular targets for future therapeutic developments to treat this devastating disease.
-
In nocturnal rodents, brain areas that promote wakefulness have a circadian pattern of neural activation that mirrors the sleep/wake cycle, with more neural activation during the active phase than during the rest phase. To investigate whether differences in temporal patterns of neural activity in wake-promoting regions contribute to differences in daily patterns of wakefulness between nocturnal and diurnal species, we assessed Fos expression patterns in the tuberomammillary (TMM), supramammillary (SUM), and raphe nuclei of male grass rats maintained in a 12:12 h light-dark cycle. ⋯ While CTB labeling was scarce in the TMM and other hypothalamic areas including the suprachiasmatic nucleus, which contains the main circadian pacemaker, a dense cluster of CTB-positive neurons was evident in the caudal dorsal raphe, and the majority of these neurons appeared to be serotonergic. Since these findings are in agreement with reports for nocturnal rodents, our results suggest that the evolution of diurnality did not involve a change in the overall distribution of neuronal connections between systems that support wakefulness and their target areas, but produced a complete temporal reversal in the functioning of those systems.
-
In the adult CNS, tissue-specific germinal niches, such as the subventricular zone of the lateral ventricles and the subgranular zone of the dentate gyrus of the hippocampus, contain multipotent neural precursor cells (NPCs) with the capacity to self-renew and differentiate into functional brain cells (i.e. neurons, astrocytes or oligodendrocytes). Due to their intrinsic plasticity, NPCs can be considered an essential part of the cellular mechanism(s) by which the CNS tries to repair itself after an injury. In inflammatory CNS disorders, such as multiple sclerosis (MS), neurogenesis and gliogenesis occur as part of an 'intrinsic' self-repair process. ⋯ We found that PPMS derived CSF markedly reduced the proliferation of ENStem-A and increased their differentiation toward neuronal and oligodendroglial cells, compared to control CSF. Similar but less striking results were seen when ENstem-A were treated with SPMS derived CSF. Our findings suggest that in both SPMS and PPMS the CNS milieu, as determined by extrapolation from CSF findings, may stimulate the endogenous pool of NPCs to differentiate into neurons and oligodendrocytes.
-
To investigate the role of glutamate receptor subtypes and GABA in orofacial function, six individual topographies of orofacial movement, both spontaneous and induced by the dopamine D1-like receptor agonist [R/S]-3-methyl-6-chloro-7,8-dihydroxy-1-[3-methyl-phenyl]-2,3,4,5-tetrahydro-1H-3-benzazepine (SKF 83959), were quantified in mutant mice with deletion of (a) GluN2A, B or D receptors, and (b) the GABA synthesizing enzyme, 65-kD isoform of glutamate decarboxylase (GAD65). In GluN2A mutants, habituation of head movements was disrupted and vibrissae movements were reduced, with an overall increase in locomotion; responsivity to SKF 83959 was unaltered. In GluN2B mutants, vertical and horizontal jaw movements and incisor chattering were increased, with an overall decrease in locomotion; under challenge with SKF 83959, head and vibrissae movements were reduced. ⋯ In GAD65 mutants, vertical jaw movements were increased, with disruption to habituation of locomotion; under challenge with SKF 83959, vertical and horizontal jaw movements and incisor chattering were decreased. Effects on orofacial movements differed from their effects on regulation of overall locomotor behavior. These findings (a) indicate novel, differential roles for GluN2A, B and D receptors and for GAD65-mediated GABA in the regulation of individual topographies of orofacial movement and (b) reveal how these roles differ from and/or interact with the established role of D1-like receptors in pattern generators and effectors for such movements.
-
Experiments were done to investigate whether hypothalamic hypocretin-1 (hcrt-1; orexin-A) neurons that sent axonal projections to cardiovascular responsive sites in the nucleus of the solitary tract (NTS) co-expressed leucine-enkephalin (L-Enk), and to determine the effects of co-administration of hcrt-1 and D-Ala2,D-Leu5-Enkephalin (DADL) into NTS on mean arterial pressure (MAP) and heart rate. In the first series, in the Wistar rat the retrograde tract-tracer fluorogold (FG) was microinjected (50nl) into caudal NTS sites at which L-glutamate (0.25 M; 10 nl) elicited decreases in MAP and where fibers hcrt-1 immunoreactive fibers were observed that also contained L-Enk immunoreactivity. Of the number of hypothalamic hcrt-1 immunoreactive neurons identified ipsilateral to the NTS injection site (1207 ± 78), 32.3 ± 2.3% co-expressed L-Enk immunoreactivity and of these, 2.6 ± 1.1% were retrogradely labeled with FG. ⋯ An hcrt-1 injection immediately after the DADL injection elicited an almost twofold increase in the magnitude of the depressor and bradycardia responses compared to those elicited by hcrt-1 alone. Prior injections of the non-specific opioid receptor antagonist naloxone or the specific opioid δ-receptor antagonist ICI 154,129 significantly attenuated the cardiovascular responses to the combined hcrt-1-DADL injections. Taken together, these data suggest that activation of hypothalamic-opioidergic neuronal systems contribute to the NTS hcrt-1 induced cardiovascular responses, and that this descending hypothalamo-medullary pathway may represent the anatomical substrate by which hcrt-1/L-Enk neurons function in the coordination of autonomic-cardiovascular responses during different behavioral states.