Neuroscience
-
Vascular dementia (VD), defined as a loss of memory and cognitive function resulting from vascular lesions in the brain, is the second-most-common cause of dementia in the elderly, after Alzheimer's disease. In recent years, research has focused on the pathogenesis of VD, and mitochondrial bioenergetic deficits have been suggested to contribute to VD onset. To further investigate the role of mitochondria in VD, we used a rat model of VD, which involved permanent bilateral occlusion of the common carotid arteries (with a 1-week interval between artery occlusion to avoid an abrupt reduction in cerebral blood flow) leading to chronic cerebral hypoperfusion. ⋯ The ischemia group mitochondria also exhibited decreased respiration coupled to decreased expression and activity of the electron transport chain complex IV (cytochrome c oxidase). These results indicate that the mitochondrial oxidative metabolism is inhibited in the hippocampi of rats following chronic ischemia-induced VD. As the mitochondrial oxidative metabolism deficits, namely mitochondrial bioenergetic deficits directly affect the functions of neurons, it may contribute to VD onset.
-
Randomized Controlled Trial
The neural substrate of the ideomotor principle revisited: evidence for asymmetries in action-effect learning.
Ideomotor theory holds that the perception or anticipatory imagination of action effects activates motor tendencies toward the action that is known to produce these effects, herein referred to as ideomotor response activation (IRA). IRA presupposes that the agent has previously learned which action produces which effects, and that this learning process has created bidirectional associations between the sensory effect codes and the motor codes producing the sensory effects. Here, we refer to this process as ideomotor learning. ⋯ We replicated earlier findings of a hand asymmetry in ideomotor processing with significantly stronger IRA by left-hand than right-hand action effects. Crucially, we traced this effect back to more pronounced associative learning for action-contingent effects of the left hand compared with effects of the right hand. In this context, our findings point to the caudate nucleus and the angular gyrus as central structures of the neural network underlying ideomotor learning.
-
Progranulin (PGRN), a multifunctional growth factor, appears to play a role in neurodegenerative diseases accompanied by neuroinflammation. In this study, we investigated the role of PGRN in neuroinflammation, especially in the activation of microglia, by means of experimental traumatic brain injury (TBI) in the cerebral cortex of mice. The expression of GRN mRNA was increased in association with neuroinflammation after TBI. ⋯ Moreover, double-immunostaining between phospho-Smad3 and glial fibrillary acidic protein suggested increased TGFβ1-Smad3 signal mainly by astrocytes. The levels of protein carbonyl groups, which reflect protein oxidation, and laminin immunoreactivity, which is associated with angiogenesis, were also significantly increased in KO mice compared to WT mice. These results suggest that PGRN is produced in CD68-positive microglia and suppresses excessive inflammatory responses related to activated microglia after TBI in mice.
-
Neurological deficit following cerebral infarction correlates with not only primary injury, but also secondary neuronal apoptosis in remote loci connected to the infarction. Netrin-1 is crucial for axonal guidance by interacting with its receptors, deleted in colorectal cancer (DCC) and uncoordinated gene 5H (UNC5H). DCC and UNC5H are also dependence receptors inducing cell apoptosis when unbound by netrin-1. ⋯ MCAO resulted in the impaired postural reflex after 8 and 14 days, with decreased NeuN marked neurons and increased TUNEL-positive cells, as well as an up-regulation in the levels of cleaved caspase-3 and UNC5H2 protein in the ipsilateral VPN, without significant change in DCC or netrin-1 expression. By exogenous netrin-1 infusion, the number of neurons was increased in the ipsilateral VPN, and both TUNEL-positive cell number and caspase-3 protein level were reduced, while UNC5H2 expression remained unaffected, simultaneously, the impairment of postural reflex was improved. Taken together, the present study indicates that exogenous netrin-1 could rescue neuron loss by attenuating secondary apoptosis in the ipsilateral VPN after focal cerebral infarction, possibly via its receptor UNC5H2, suggesting that relative insufficiency of endogenous netrin-1 be an underlying mechanism of secondary injury in the VPN post stroke.
-
Peripheral nerve injury evokes rapid and complex changes in gene transcription and cellular signaling pathways. Understanding how these changes are functionally related is essential for developing new approaches that accelerate and improve nerve regeneration. Toward this goal we found that nerve injury induces a rapid and significant up-regulation of the transcription factor Sox11 in dorsal root ganglia (DRG) neurons. ⋯ Luciferase expression assays coupled with site-directed mutagenesis showed each site contributes to enhanced TANK promoter activity. In addition, chromatin immunoprecipitation assays showed direct Sox11 binding in regions containing the two identified Sox motifs in the mouse TANK 5'-UTR. These studies are the first to show that TANK is expressed in DRG neurons, that TANK is increased by peripheral nerve injury and that the regulation of TANK expression is, at least in part, controlled by the injury-associated transcription factor Sox11.