Neuroscience
-
Seasonal affective disorder (SAD) is a major depressive disorder that recurs in the fall and winter when day-length gets short. It is well accepted that day-length is encoded by the principal circadian clock located in the suprachiasmatic nucleus (SCN), but very little is known about day-length encoding in diurnal mammals. The present study utilized the grass rat, Arvicanthis niloticus, to investigate how the circadian system responds to photoperiodic changes in a diurnal mammal that shows day-length-dependent mood changes. ⋯ The depression-like behaviors were assessed using sweet solution preference (SSP) and forced swimming test (FST). Animals in the SP group showed decreased SSP and increased immobility time in FST as compared to the EP group, suggesting a depressive phenotype. The present study serves as the first step toward exploring the role that the circadian system plays in SAD using a diurnal rodent model.
-
The ability to reweight visual and proprioceptive information is critical for maintaining postural stability in a dynamic environment. In this study, we examined whether visual anticipation of collision avoidance (AV) while standing could facilitate the down-weighting of altered proprioception in young and elderly adults. Twelve young (24.91±6.44years) and 12 elderly (74.8±6.42years) participants stood upright for 180s under two task conditions: (a) quiet stance (QS) and (b) standing while anticipating virtual objects to be avoided. ⋯ These results suggest that volitionally shifting reliance on vision when anticipating a collision AV event facilitates the down-weighting of altered proprioception. Elderly adults seem to be unable to dynamically exploit visual anticipation in order to down weight the altered proprioception possibly as a result of their more permanent up-weighting of the visual modality. Sensory reweighting seems to be a more time consuming process in aging which may have important clinical implications for falling.
-
The phosphorylation of p38 mitogen-activated protein kinase (MAPK) in the dorsal root ganglion (DRG) promotes primary afferent sensitization. The role of p38MAPK signaling in the DRG in the pathogenesis of plantar incision hyperalgesia has not been investigated. ⋯ p38MAPK signaling in the DRG plays a crucial role in the development of primary afferent sensitization and pain behavior caused by plantar incision.
-
Long-term potentiation (LTP) can be induced by electrical stimulation and gives rise to an increase in synaptic strength at the first relay. This phenomenon has been associated with learning and memory and also could be the origin of several pathological states elicited by an initial strong painful stimulus, such as some forms of neuropathic pain. We used high-frequency electrical stimulation of the sciatic nerve in anesthetized rats to produce spinal LTP. ⋯ Furthermore, after 3h of LTP induction, PoT neurons could respond to cutaneous stimulation applied to different paws. Interestingly, the conduction velocities for the receptive field responses from the paw to the PoT cells were compatible with those of Aδ-fibers. Since PoT cells project to the insular cortex, the progressive increase in PoT activity and also the progressive unmasking of somatic receptive fields in response to LTP, place these cells in a key position to detect pain stimuli following central sensitization.
-
The capability to integrate into degenerative environment, release neurotrophic cytokines, contrast oxidative stress and an inherent differentiation potential towards siteappropriate phenotypes are considered crucial for the use of stem cells in tissue repair and regeneration. Naïve human chorial villi- (hCVCs) and amniotic fluid- (hAFCs) derived cells, whose properties and potentiality have not been extensively investigated, may represent two novel foetal cell sources for stem cell therapy. We previously described that long-term transplantation of hAFCs in the lateral ventricles of wobbler and healthy mice was feasible and safe. ⋯ Both cell types express several specific neural stem/progenitor markers, such as nestin and connexin 43, and release significant amounts of brain-derived neurotrophic factor, as well as vascular endothelial growth factor. hCVC and hAFC populations comprise several interesting cell lineages, including mesenchymal stem cells (MSCs) and cells with neural-like phenotypes. Moreover, although CMs obtained from both cell cultures actively sustained metabolic activity in a 6-OHDA-induced Parkinson's disease (PD) cell model, only hCVC-derived CMs significantly reduced neurotoxin-induced apoptosis. In conclusion, this study demonstrates that naïve hAFCs and hCVCs may enhance cell-recovery following neuronal damage through multiple rescue mechanisms, and may provide a suitable means of stem cell therapy for neurodegenerative disorders including PD.