Neuroscience
-
Ammonia inhibits long-term potentiation via neurosteroid synthesis in hippocampal pyramidal neurons.
Neurosteroids are a class of endogenous steroids synthesized in the brain that are believed to be involved in the pathogenesis of neuropsychiatric disorders and memory impairment. Ammonia impairs long-term potentiation (LTP), a synaptic model of learning, in the hippocampus, a brain region involved in memory acquisition. Although mechanisms underlying ammonia-mediated LTP inhibition are not fully understood, we previously found that the activation of N-methyl-d-aspartate receptors (NMDARs) is important. ⋯ Finasteride also overcame LTP inhibition by 100 μM ammonia, as did picrotoxin, an inhibitor of GABA-A receptors. These results indicate that GABA-enhancing neurosteroids, synthesized locally within pyramidal neurons, contribute significantly to ammonia-mediated synaptic dysfunction. These results suggest that the manipulation of neurosteroid synthesis could provide a strategy to improve cognitive function in individuals with hyperammonemia.
-
Comparative Study
Comparing the after-effects of continuous theta burst stimulation and conventional 1 Hz rTMS on semantic processing.
Our aim was to evaluate continuous theta burst stimulation (cTBS) as a tool to induce temporary impairment (virtual lesion) in semantic processing. Four groups with 20 subjects each were stimulated. In the three experimental groups the stimulation site was the left superior temporal cortex. ⋯ The effect lasted for the whole task, but declined from the first to the second half of the experiment. The direct comparison of cTBS and 1 Hz rTMS suggests that both stimulation patterns can induce virtual lesions in the left superior temporal cortex and impair semantic processing. We suppose that cTBS could replace 1 Hz rTMS in this field since the application is faster and it is more comfortable to the subjects.
-
Dopamine-derived neurotoxins, 1-methyl-4-phenyl-1,2,3,4-tetrahydroisoquinoline (salsolinol) and 1(R),2(N)-dimethyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline (NM-salsolinol) are the two most possible 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-like endogenous neurotoxin candidates that involved in the pathogenesis of Parkinson's disease (PD). The levels of endogenously synthesized salsolinol and NM-salsolinol are increased in the cerebrospinal fluid (CSF) of PD patients. Both of them lead to neurotoxicity in dopaminergic cells by inhibiting mitochondrial electron transport chain. ⋯ The level of mitochondrial membrane potential loss, cristae disruption and the release of cytochrome c increased significantly along with the increased level of salsolinol and NM-salsolinol, whereas compared to parkin knock down cells in the presence of H₂O₂, the mitochondrial damage and higher cell mortality were both diminished when the levels of salsolinol and NM-salsolinol was reduced. The results not only indicate the elevated level of salsolinol and NM-salsolinol, but also reveal the potential role of salsolinol and NM-salsolinol in parkin knock down-induced cell vulnerability. We assume that parkin deficiency is the trigger of excessive oxidative stress, elevated endogenous neurotoxin levels and mitochondrial damage, which eventually results in cell death of dopaminergic cells.
-
Comparative Study
Basolateral amygdala activity during the retrieval of associative learning under anesthesia.
Associative learning can occur under anesthesia and its neural correlates have begun to be elucidated. During discrimination learning under anesthesia in rats, lateral amygdala excitability increases in response to a conditioned stimulus (CS+) previously paired with electrical stimulation of the paw but not to another stimulus presented alone (CS-). Similarly, medial prefrontal cortex activity increases selectively during CS+ presentation after discrimination learning but this occurs only in neurons receiving input from the basolateral amygdala (BLA), the main source of amygdaloid projections to this region. ⋯ LFP power also showed a modest increase during CS+, compared to CS-, presentation. These findings suggest that discrimination learning under anesthesia can occur at the neural level in BLA. The potential relevance of these results is discussed in relation to previous studies examining neural activity during fear learning and memory processing in conscious animals.
-
Parkinson's disease (PD) is an asymmetric neurodegenerative disorder, and secondary adaptive mechanisms of the less-affected side could potentially compensate for parkinsonian symptoms. Here, we analyzed gene expression changes on the healthy side of a unilateral PD rat model and correlated these changes with locomotor velocity, which is known to be decreased in PD. Four weeks after a unilateral 6-hydroxydopamine lesion, the spontaneous locomotor velocity of rats was recorded just prior to brain extraction. ⋯ In contrast, no contralateral changes were observed in the striatal indirect pathway. We also did not find any significant contralateral modifications of TH, DAT or glutamatergic markers in PD animals, indicating that changes in direct pathway genes are not due to nigrostriatal dopaminergic or corticostriatal glutamatergic innervation. In conclusion, our results suggest a role of the healthy striatal direct pathway in counteracting dopaminergic denervation effects on motor symptoms.