Neuroscience
-
Studies on the neuritis model suggest that in many patients with neuropathic pain, symptoms may be due to nerve inflammation rather than frank nerve injury. Treatments for these patients are often ineffective. The neuroprotective and hematopoietic agent erythropoietin (EPO) has been shown to reverse pain behaviors in nerve injury models and therefore may be of therapeutic benefit. ⋯ The levels of CCL2 and TNF-α mRNA in the nerve and Gelfoam were not significantly different following 120 μg/kg ARA290 treatment (n=3-7) compared to vehicle-treated animals (n=3-7; p=0.24; unpaired t tests). In summary, ARA290 may be beneficial in the treatment of neuropathic pain symptoms where signs of nerve injury are absent on clinical assessment. The mechanisms of action do not appear to involve the inhibition of TNF-α or CCL2 production.
-
Parkinson's disease (PD) is an asymmetric neurodegenerative disorder, and secondary adaptive mechanisms of the less-affected side could potentially compensate for parkinsonian symptoms. Here, we analyzed gene expression changes on the healthy side of a unilateral PD rat model and correlated these changes with locomotor velocity, which is known to be decreased in PD. Four weeks after a unilateral 6-hydroxydopamine lesion, the spontaneous locomotor velocity of rats was recorded just prior to brain extraction. ⋯ In contrast, no contralateral changes were observed in the striatal indirect pathway. We also did not find any significant contralateral modifications of TH, DAT or glutamatergic markers in PD animals, indicating that changes in direct pathway genes are not due to nigrostriatal dopaminergic or corticostriatal glutamatergic innervation. In conclusion, our results suggest a role of the healthy striatal direct pathway in counteracting dopaminergic denervation effects on motor symptoms.
-
Heroin is reported to cause spongiform leukoencephalopathy (SLE) in heroin addicts and the exact mechanism has not yet been identified. In the present study, we found that heroin could induce apoptosis of primary cultured cerebellar granule cells (CGCs) and Bim was upregulated both transcriptionally and post transcriptionally during CGCs apoptosis. Upregulated Bim translocated to mitochondria and Bax was activated under heroin treatment. ⋯ Bim was demonstrated as a downstream target of JNK/c-Jun pathway in this process because pharmacological inhibition of JNK reduced the levels of Bim mRNA and protein. These results indicate that Bim plays a critical role in the neurotoxic process by heroin and JNK/c-Jun pathway acts upstream of Bim in regulating heroin-induced neuronal death. This represents a detailed mechanism of heroin-induced neuronal apoptosis and may provide a new and effective strategy to treat heroin-induced addiction and SLE.
-
Microglial phagocytosis plays a key role in neuroprotective and neurodegenerative responses of the innate immune system in the brain. Here we investigated the regulatory function of phosphoinositide 3-kinase γ (PI3Kγ) in phagocytosis of bacteria and Zymosan particles by mouse brain microglia in vitro and in vivo. ⋯ These data suggest kinase-independent stimulation of cAMP phosphodiesterase activity by PI3Kγ as a crucial mediator of phagocytosis. In sum our findings indicate PI3Kγ-dependent suppression of cAMP signaling as a critical regulatory element of microglial phagocytosis.
-
This study examined the projections from the rat insular cortex (Ins) to lower brainstem areas which are possibly involved in orofacial pain processing. We first examined distributions of Ins neurons projecting directly to the trigeminal caudal subnucleus (Vc, medullary dorsal horn) and oral subnucleus (Vo) which are known to receive orofacial nociceptive inputs. After injections of a retrograde tracer, Fluorogold (FG), into the medial part and lateral part of laminae I/II of Vc, many neurons were labeled bilaterally with a contralateral predominance in the rostral level of granular Ins (GI) and dysgranular Ins (DI) and the caudal level of GI/DI, respectively, but none in the agranular Ins (AI). ⋯ After injections of an anterograde tracer, biotinylated dextranamine (BDA), into the rostral GI/DI, many BDA-labeled axons and terminals were seen bilaterally with a contralateral predominance in the medial part of laminae I/II of Vc, dorsomedial Vo, juxtatrigeminal region, rostral ventromedial medulla (RVM), and nucleus of the solitary tract, and with an ipsilateral predominance in the parabrachial nucleus (Pb), Kölliker-Fuse nucleus (KF) and trigeminal mesencephalic nucleus. After BDA injections into the caudal GI/DI, they were seen bilaterally with a contralateral predominance in the lateral part of laminae I/II of Vc, ventrolateral Vo, juxtatrigeminal region and RVM, and with an ipsilateral dominance in the lateral zone (PAGl) of periaqueductal gray, Pb and KF. These results suggest that orofacial nociceptive processing of Vc and Vo neurons may be regulated by GI/DI directly or indirectly through brainstem nuclei such as PAGl, Pb, KF and RVM.