Neuroscience
-
Nerve growth factor (NGF) is an important mediator in the initiation of the inflammatory response and NGF via activation of the p75 neurotrophin receptor (p75(NTR)) and downstream sphingomyelin signaling leads to significant enhancement of the excitability of small-diameter sensory neurons. Because of the interaction between sphingomyelin and cholesterol in creating membrane liquid-ordered domains known as membrane or lipid rafts, we examined whether neuronal NGF-induced sensitization via p75(NTR) was dependent on the integrity of membrane rafts. Here, we demonstrate that the capacity of NGF to enhance the excitability of sensory neurons may result from the interaction of p75(NTR) with its downstream signaling partner(s) in membrane rafts. ⋯ In addition, adding back MβCD with cholesterol restored the NGF-induced sensitization in previously cholesterol-depleted neurons, suggesting that cholesterol and the structural integrity of rafts are key to promoting NGF-mediated sensitization. Using established protocols to isolate detergent-resistant membranes, both p75(NTR) and the neuronal membrane raft marker, flotillin, localize to raft fractions. These results suggest that downstream signaling partners interacting with p75(NTR) in sensory neurons are associated with membrane raft signaling platforms.
-
The senses of hearing and balance in vertebrates are transduced by hair cells in the inner ear. Hair cells from a wide variety of organisms have been described electrophysiologically but this is the first report of the application of these techniques to the genetically tractable zebrafish model system. Auditory and vestibular hair cells isolated from zebrafish lagenae and utricles were patch clamped and both inward and outward currents under voltage clamp, and changes in membrane potential under current clamp were recorded. ⋯ While all cells showed evidence of the presence of fast-inactivating (A-type) K(+) channels, other K(+) channel types, including delayed rectifier, inward rectifier and large conductance Ca(2+)-activated K(+) (BK) channels were less common. Recorded Ca(2+) currents were identified pharmacologically as L-type. Non-linear regenerative voltage responses were evoked in more than half of the cells studied.
-
Photoperiodism is a biological phenomenon, common among organisms living outside of the tropics, by which environmental day length is used to ascertain the time of year to engage in seasonally-appropriate adaptations. White-footed mice (Peromyscus leucopus) are small photoperiodic rodents which display a suite of adaptive winter responses to short day lengths mediated by the extended duration of nightly melatonin secretion. Exposure to short days alters hippocampal dendritic morphology, impairs spatial learning and memory, and impairs hippocampal long-term potentiation (LTP). ⋯ After 10 weeks, mice were assessed for hippocampal LTP, tested for spatial learning and memory in the Barnes maze, and morphometric analysis of neurons in the hippocampus using Golgi staining. Extending the duration of melatonin exposure, by short-day exposure or via melatonin implants, impaired both Schaffer collateral LTP in the CA1 region of the hippocampus and spatial learning and memory, and altered neuronal morphology in all hippocampal regions. The current results demonstrate that chronic melatonin implants reproduce the effects of short days on the hippocampus and implicate melatonin signaling as a critical factor in day-length-induced changes in the structure and function of the hippocampus in a photoperiodic rodent.
-
The maximum rate (Vmax) of some enzymatic activities related to energy consumption was evaluated in synaptic plasma membranes from rat brain striatum, the synaptic energy state being a crucial factor in neurodegenerative diseases etiopathogenesis. Two types of synaptic plasma membranes were isolated from rats subjected to in vivo treatment with L-acetylcarnitine at two different doses (30 and 60 mg × kg(-1) i.p., 28 days, 5 days/week). The following enzyme activities were evaluated: acetylcholinesterase (AChE); Na(+), K(+), Mg(2+)-ATP-ase; ouabain insensitive Mg(2+)-ATP-ase; Na(+), K(+)-ATP-ase; direct Mg(2+)-ATP-ase; Ca(2+), Mg(2+)-ATP-ase; and low- and high-affinity Ca(2+)-ATP-ase. ⋯ Pharmacological treatment decreased ouabain insensitive Mg(2+)-ATP-ase activity and high affinity Ca(2+)-ATP-ase activity at the doses of 30 and 60 mg × kg(-1) respectively on SPM1, while it decreased Na(+), K(+)-ATP-ase, direct Mg(2+)-ATP-ase and Ca(2+), Mg(2+)-ATP-ase activities at the dose of 30 mg × kg(-1) on SPM2. These results suggest that the sensitivity to drug treatment is different between these two populations of synaptic plasma membranes from the striatum, confirming the micro-heterogeneity of these subfractions, possessing different metabolic machinery with respect to energy consumption and utilization and the regional selective effect of L-acetylcarnitine on cerebral tissue, depending on the considered area. The drug potential effect at the synaptic level in Parkinson's Disease neuroprotection is also discussed with respect to acetylcholine and energy metabolism.
-
The role of inflammation in inducing visceral hypersensitivity (VHS) in ulcerative colitis patients remains unknown. We tested the hypothesis that acute ulcerative colitis-like inflammation does not induce VHS. However, it sets up molecular conditions such that chronic stress following inflammation exaggerates single-unit afferent discharges to colorectal distension. ⋯ DSS-inflammation did not affect the composition or excitation thresholds of low-threshold and high-threshold fibers. Chronic stress following inflammation increased the percent composition of high-threshold fibers and lowered the excitation threshold of both types of fibers. We conclude that not all types of inflammation induce VHS, whereas chronic stress induces VHS in the absence of inflammation.