Neuroscience
-
Non-invasive brain imaging requires comprehensive interpretation of hemodynamic signals. In functional magnetic resonance imaging, blood oxygen level dependent (BOLD) signals are used to infer neural processes. This necessitates a clear understanding of how BOLD signals and neural activity are related. ⋯ During excitatory binocular interaction, we find that metabolic, spiking, and local field potential responses are correlated. However, during suppressive binocular interaction, spiking activity and local field potentials (LFP) are dissociated while only the latter is coupled with metabolic response. These results suggest that inhibitory connections may be a key factor in the dissociation between LFP and spiking activity, which may contribute substantially to the close coupling between the BOLD signal and synchronized synaptic activity in the brain.
-
D2 receptor null mutant (Drd2(-/-)) mice have altered responses to the rewarding and locomotor effects of psychostimulant drugs, which is evidence of a necessary role for D2 receptors in these behaviors. Furthermore, work with mice that constitutively express only the D2 receptor short form (D2S), as a result of genetic deletion of the long form (D2L), provides the basis for a current model in which D2L is thought to be the postsynaptic D2 receptor on medium spiny neurons in the basal forebrain, and D2S the autoreceptor that regulates the activity of dopamine neurons and dopamine synthesis and release. Because constitutive genetic deletion of the D2 or D2L receptor may cause compensatory changes that influence functional outcomes, our approach is to identify aspects of the abnormal phenotype of a Drd2(-/-) mouse that can be normalized by virus-mediated D2 receptor expression. ⋯ Furthermore, the effect of expression of D2S was indistinguishable from D2L. Similarly, virus-mediated expression of either D2S or D2L in substantia nigra neurons restored D2 agonist-induced activation of GIRKs. In this acute expression system, the alternatively spliced forms of the D2 receptor appear to be equally capable of acting as postsynaptic receptors and autoreceptors.
-
Neuronal losses have been shown to occur in the brainstem following a neonatal hypoxic-ischaemic (HI) insult. In particular serotonergic neurons, situated in the dorsal raphé nuclei, appear to be vulnerable to HI injury. Nonetheless the mechanisms contributing to losses of serotonergic neurons in the brainstem remain to be elucidated. ⋯ On the other hand, after tracer deposit in the DR ventral nucleus, we found significant reductions in numbers of retrogradely labelled neurons in the hypothalamus, preoptic area and medial amygdala in P3 HI animals compared to controls. Since losses of descending inputs are associated with decreases in serotonergic neurons in the brainstem raphé nuclei, we propose that disruption of certain descending neural inputs from the forebrain to the DR dorsal and the DR ventral nuclei may contribute to losses of serotonergic neurons after P3 HI. It is important to delineate the phenotypes of different neuronal networks affected by neonatal HI, and the mechanisms underpinning this damage, so that interventions can be devised to target and protect axons from the harmful effects of neonatal HI.
-
Intracerebroventricular (i.c.v.) injection of kynurenic acid (KYNA) had sedative and hypnotic effects during stress in neonatal chicks. However, its mechanism has not been clarified. KYNA is an endogenous antagonist of the α7 nicotinic acetylcholine (α7nACh) receptor and N-methyl-d-aspartate (NMDA) receptor. ⋯ In Experiment 2, the role of the NMDA receptor was investigated using the NMDA receptor antagonist (+)-MK-801, d-serine which has high affinity to a co-agonist glycine site at the NMDA receptors, NMDA as the NMDA receptor agonist, and 2,3-pyridinedicarboxylic acid (QUIN), an agonist of the NMDA receptor subgroup containing the subunits NR2A and NR2B. The behavioral changes following KYNA were partially attenuated by QUIN alone. In conclusion, we suggest that KYNA functioned via the simultaneous inhibition of the α7nACh receptor and NMDA receptor subgroup containing the subunits NR2A and NR2B.
-
The velocity of impact between an object and the human head is a critical factor influencing brain injury outcomes but has not been explored in any detail in animal models. Here we provide a comprehensive overview of the interplay between impact velocity and injury severity in a well-established weight-drop impact acceleration (WDIA) model of diffuse brain injury in rodents. ⋯ There were impact velocity-dependent reductions in sensorimotor performance and in cortical depth-related depression of sensory cortex responses; however axonal injury (demonstrated by immunohistochemistry for β-amyloid precursor protein and neurofilament heavy-chain) was discernible only at the highest impact velocity. We conclude that the WDIA model is capable of producing graded axonal injury in a repeatable manner, and as such will prove useful in the study of the biomechanics, pathophysiology and potential treatment of diffuse axonal injury.