Neuroscience
-
A number of psychiatric illnesses have been associated with prenatal disturbance of brain development, including autism, attention deficit hyperactivity disorder, and schizophrenia. Individuals afflicted with these disorders exhibit both repetitive motor and cognitive behavior. The potential role that environmental insult to the developing brain may play in generating these aberrant behaviors is unclear. ⋯ Perseverative errors and non-perseverative errors were recorded in early stages of the testing, at the 0 delay interval. While performing DA, FIMs made more errors of perseveration than CONs yet the number of total errors committed did not differ between groups. The presence of motor stereotypies and cognitive perseveration in fetally irradiated non-human primates suggests that environmental insult to the embryonic brain may contribute to repetitive motor and cognitive behaviors in neuropsychiatric diseases.
-
In adult animals, the cerebellum is richly innervated by serotonin: serotonergic fibres are the third main afferent fibres into the cerebellum. However, the physiology of the serotonergic system and its functional significance are not fully known during development in the cerebellum. In this review we will focus on the serotonergic regulation of the cerebellum during postnatal development. ⋯ Thus, we propose that serotonin controls cerebellar development in three phases: (1) stimulation of dendritic growth and formation of synapses, (2) hard-wiring of neuronal connections with limits to dendritic growth but ensuring synaptic plasticity, and (3) stabilization of synapses. Taken together, serotonin receptors expressed by different cells in the cerebellum have a specialized role during postnatal development, but with some similar main effects. Distinct spatial and temporal expression of these receptors gives serotonin a powerful and specific role in cerebellar development.
-
The hippocampus, derived from medial regions of the telencephalon, constitutes a remarkable brain structure. It is part of the limbic system, and it plays important roles in information encoding, related to short-term and long-term memory, and spatial navigation. It has also attracted the attention of many clinicians and neuroscientists for its involvement in a wide spectrum of pathological conditions, including epilepsy, intellectual disability, Alzheimer disease and others. ⋯ As well as original landmark findings, modern techniques such as large-scale in situ hybridizations, in utero electroporation and the study of mouse mutants with hippocampal phenotypes, add further detail to our knowledge of the finely regulated processes which form this intricate structure. Molecular signatures are being revealed related to field, intra-field and laminar cell identity, as well as, cell compartments expressing surface proteins instrumental for connectivity. We summarize here old and new findings, and highlight elegant tools used to fine-study hippocampal development.
-
Nuclear factor (NF)-κB acetylation has been shown to participate in a number of neurological processes by regulating the expression of certain genes. We have previously demonstrated the neuronal nitric oxide synthase (nNOS) expression and nitric oxide (NO) production may be regulated by NF-κB acetylation via an NF-κB responsive element within the nNOS promoter in neuronal cells. p300 is a ubiquitous transcription coactivator with intrinsic histone acetyltransferase (HAT) activity, which is important in the nervous system. ⋯ Meanwhile, p300 was shown to directly acetylate NF-κB p65 and p50 subunits, interact with NF-κB and bind to the NF-κB responsive element region within the nNOS promoter. Taken together, our results indicate p300 acts as both an HAT and a coactivator in regulating NF-κB-mediated nNOS expression, which provide some correlations between p300 and nNOS in neuronal cell, and suggest that some p300-related neurological disorders may be partially based on its effect on the nNOS expression.
-
The regulation of D₃ receptor has not been well documented in diffuse Lewy body disease (DLBD). In this study, a novel D₃-preferring radioligand [(3)H]WC-10 and a D₂-preferring radioligand [(3)H]raclopride were used and the absolute densities of the dopamine D₃ and D₂ receptors were determined in the striatal regions and substantia nigra (SN) from postmortem brains from five cases of DLBD, which included dementia with Lewy bodies (DLB, n=4) and Parkinson disease dementia (PDD, n=1). The densities of the dopamine D₁ receptor, vesicular monoamine transporter 2 (VMAT2), and dopamine transporter (DAT) were also measured by quantitative autoradiography using [(3)H]SCH23390, [(3)H]dihydrotetrabenazine, and [(3)H]WIN35428, respectively. ⋯ VMAT2 and DAT densities were reduced in all the brain regions measured in DLB/PDD, however, the significant reduction was found in the putamen for DAT and in the NAc and SN for VMAT2. The decrease of dopamine pre-synaptic markers implies neuronal loss in the substantia nigra pars compacta (SNpc) in these DLB/PDD cases, while the increase of D₃ receptors in striatal regions could be attributed to dopaminergic medication history and psychiatric states such as hallucinations. Whether it also reflects compensatory regulation upon dopaminergic denervation warrants further confirmations on larger populations.