Neuroscience
-
A high-fat diet (HFD) can increase hypothalamic galanin (GAL). GAL has recently been shown to inhibit opiate reward, which in turn, decreases cAMP response element-binding protein (CREB) in the nucleus accumbens (NAc). We hypothesized that injection of GAL into the paraventricular nucleus (PVN), or consumption of a HFD, would be associated with a decrease in NAc CREB. ⋯ Body weight, serum triglyceride and leptin levels were also raised in the chronic HFD-fed rats. These data suggest that PVN GAL or chronic intake of a HFD can decrease NAc pCREB. The implications of these findings may help to explain the lack of opiate-like withdrawal that has been reported in response to overeating a HFD, thereby providing a potential mechanism underlying behavioral differences seen with addiction-like overconsumption of different types of palatable foods.
-
The transmembrane α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor regulatory proteins (TARPs) are a family of auxiliary AMPA receptor subunits that differentially modulate trafficking and many functional properties of the receptor. To investigate which TARP isoforms may be involved in AMPA receptor-mediated spinal synaptic transmission, we have mapped the localization of five of the known TARP isoforms, namely γ-2 (also known as stargazin), γ-3, γ-4, γ-7 and γ-8, in the rat spinal cord. Immunoblotting showed expression of all isoforms in the spinal cord to varying degrees. ⋯ Synaptic immunogold labeling of γ-2 was sparse throughout the dorsal horn, with some primary afferent synapses weakly labeled, whereas relatively strong γ-7 immunogold labeling was found at deep dorsal horn synapses, including at synapses formed by low-threshold mechanosensitive primary afferent terminals. Prominent immunogold labeling of γ-8 was frequently detected at synapses established by primary afferent fibers. The spinal localization patterns of TARP isoforms reported here suggest that AMPA receptors at spinal synaptic populations and in glial cells may exhibit different functional characteristics owing to differences in auxiliary subunit composition.
-
Reproductive success depends on a robust and appropriately timed preovulatory luteinizing hormone (LH) surge, which is induced by the activation of gonadotropin-releasing hormone (GnRH) neurons in response to positive feedback from increasing estrogen levels. Here we document an increase in postsynaptic GluR2-lacking Ca2+ -permeable AMPA-type glutamate receptors (CP-AMPARs) at synapses on GnRH neurons on the day of proestrus in rats, coincident with the increase in estrogen levels. Functional blockade of CP-AMPARs depressed the synaptic responses only on the day of proestrus and concomitantly attenuated the LH surge. Thus, the phasic synaptic incorporation of postsynaptic CP-AMPARs on GnRH neurons is involved in the generation of the LH surge.
-
The senses of hearing and balance in vertebrates are transduced by hair cells in the inner ear. Hair cells from a wide variety of organisms have been described electrophysiologically but this is the first report of the application of these techniques to the genetically tractable zebrafish model system. Auditory and vestibular hair cells isolated from zebrafish lagenae and utricles were patch clamped and both inward and outward currents under voltage clamp, and changes in membrane potential under current clamp were recorded. ⋯ While all cells showed evidence of the presence of fast-inactivating (A-type) K(+) channels, other K(+) channel types, including delayed rectifier, inward rectifier and large conductance Ca(2+)-activated K(+) (BK) channels were less common. Recorded Ca(2+) currents were identified pharmacologically as L-type. Non-linear regenerative voltage responses were evoked in more than half of the cells studied.
-
The maximum rate (Vmax) of some enzymatic activities related to energy consumption was evaluated in synaptic plasma membranes from rat brain striatum, the synaptic energy state being a crucial factor in neurodegenerative diseases etiopathogenesis. Two types of synaptic plasma membranes were isolated from rats subjected to in vivo treatment with L-acetylcarnitine at two different doses (30 and 60 mg × kg(-1) i.p., 28 days, 5 days/week). The following enzyme activities were evaluated: acetylcholinesterase (AChE); Na(+), K(+), Mg(2+)-ATP-ase; ouabain insensitive Mg(2+)-ATP-ase; Na(+), K(+)-ATP-ase; direct Mg(2+)-ATP-ase; Ca(2+), Mg(2+)-ATP-ase; and low- and high-affinity Ca(2+)-ATP-ase. ⋯ Pharmacological treatment decreased ouabain insensitive Mg(2+)-ATP-ase activity and high affinity Ca(2+)-ATP-ase activity at the doses of 30 and 60 mg × kg(-1) respectively on SPM1, while it decreased Na(+), K(+)-ATP-ase, direct Mg(2+)-ATP-ase and Ca(2+), Mg(2+)-ATP-ase activities at the dose of 30 mg × kg(-1) on SPM2. These results suggest that the sensitivity to drug treatment is different between these two populations of synaptic plasma membranes from the striatum, confirming the micro-heterogeneity of these subfractions, possessing different metabolic machinery with respect to energy consumption and utilization and the regional selective effect of L-acetylcarnitine on cerebral tissue, depending on the considered area. The drug potential effect at the synaptic level in Parkinson's Disease neuroprotection is also discussed with respect to acetylcholine and energy metabolism.