Neuroscience
-
A number of psychiatric illnesses have been associated with prenatal disturbance of brain development, including autism, attention deficit hyperactivity disorder, and schizophrenia. Individuals afflicted with these disorders exhibit both repetitive motor and cognitive behavior. The potential role that environmental insult to the developing brain may play in generating these aberrant behaviors is unclear. ⋯ Perseverative errors and non-perseverative errors were recorded in early stages of the testing, at the 0 delay interval. While performing DA, FIMs made more errors of perseveration than CONs yet the number of total errors committed did not differ between groups. The presence of motor stereotypies and cognitive perseveration in fetally irradiated non-human primates suggests that environmental insult to the embryonic brain may contribute to repetitive motor and cognitive behaviors in neuropsychiatric diseases.
-
The regulation of D₃ receptor has not been well documented in diffuse Lewy body disease (DLBD). In this study, a novel D₃-preferring radioligand [(3)H]WC-10 and a D₂-preferring radioligand [(3)H]raclopride were used and the absolute densities of the dopamine D₃ and D₂ receptors were determined in the striatal regions and substantia nigra (SN) from postmortem brains from five cases of DLBD, which included dementia with Lewy bodies (DLB, n=4) and Parkinson disease dementia (PDD, n=1). The densities of the dopamine D₁ receptor, vesicular monoamine transporter 2 (VMAT2), and dopamine transporter (DAT) were also measured by quantitative autoradiography using [(3)H]SCH23390, [(3)H]dihydrotetrabenazine, and [(3)H]WIN35428, respectively. ⋯ VMAT2 and DAT densities were reduced in all the brain regions measured in DLB/PDD, however, the significant reduction was found in the putamen for DAT and in the NAc and SN for VMAT2. The decrease of dopamine pre-synaptic markers implies neuronal loss in the substantia nigra pars compacta (SNpc) in these DLB/PDD cases, while the increase of D₃ receptors in striatal regions could be attributed to dopaminergic medication history and psychiatric states such as hallucinations. Whether it also reflects compensatory regulation upon dopaminergic denervation warrants further confirmations on larger populations.
-
Both tumor necrosis factor (TNF)-α and the angiotensin (Ang) II/angiotensin II receptor type 1 (AT1) axis play important roles in neuropathic pain and nociception. In the present study, we explored the interaction between the two systems by examining the mutual effects between TNF-α and the Ang II/AT1 receptor axis in dorsal root ganglion (DRG) neurons. Rat DRG neurons were treated with TNF-α in different concentrations for different lengths of time in the presence or absence of transcription inhibitor actinomycin D, TNF receptor 1 (TNFR1) inhibitor SPD304, β-catenin signaling inhibitor CCT031374, or different kinase inhibitors. ⋯ In conclusion, we demonstrate that TNF-α inhibits AT1 receptor expression at the transcription level via TNFR1 in rat DRG neurons by increasing the soluble β-catenin level through the p38 MAPK/GSK-3β pathway. In addition, Ang II appears to inhibit and induce TNF-α expression via the AT1 receptor and the AT2 receptor in DRG neurons, respectively. This is the first evidence of crosstalk between TNF-α and the Ang II/AT receptor axis in DRG neurons.
-
Non-invasive brain imaging requires comprehensive interpretation of hemodynamic signals. In functional magnetic resonance imaging, blood oxygen level dependent (BOLD) signals are used to infer neural processes. This necessitates a clear understanding of how BOLD signals and neural activity are related. ⋯ During excitatory binocular interaction, we find that metabolic, spiking, and local field potential responses are correlated. However, during suppressive binocular interaction, spiking activity and local field potentials (LFP) are dissociated while only the latter is coupled with metabolic response. These results suggest that inhibitory connections may be a key factor in the dissociation between LFP and spiking activity, which may contribute substantially to the close coupling between the BOLD signal and synchronized synaptic activity in the brain.
-
The velocity of impact between an object and the human head is a critical factor influencing brain injury outcomes but has not been explored in any detail in animal models. Here we provide a comprehensive overview of the interplay between impact velocity and injury severity in a well-established weight-drop impact acceleration (WDIA) model of diffuse brain injury in rodents. ⋯ There were impact velocity-dependent reductions in sensorimotor performance and in cortical depth-related depression of sensory cortex responses; however axonal injury (demonstrated by immunohistochemistry for β-amyloid precursor protein and neurofilament heavy-chain) was discernible only at the highest impact velocity. We conclude that the WDIA model is capable of producing graded axonal injury in a repeatable manner, and as such will prove useful in the study of the biomechanics, pathophysiology and potential treatment of diffuse axonal injury.