Neuroscience
-
Acoustic trauma, a leading cause of sensorineural hearing loss in adults, induces a complex degenerative process in the cochlea. Although previous investigations have identified multiple stress pathways, a comprehensive analysis of cochlear responses to acoustic injury is still lacking. In the current study, we used the next-generation RNA-sequencing (RNA-Seq) technique to sequence the whole transcriptome of the normal and noise-traumatized cochlear sensory epithelia (CSE). ⋯ Moreover, protein expression analysis revealed strong expression of Cfi and C1s proteins in the organ of Corti. Importantly, these proteins exhibited expression changes following acoustic trauma. Collectively, the results of the current investigation suggest the involvement of the complement components in cochlear responses to acoustic trauma.
-
S-nitrosoglutathione (GSNO) has been reported to protect against ischemic brain injury, however, the underlying mechanisms remain to be elucidated. In the present study, we aimed to investigate the effects of GSNO pre-treatment on the S-nitrosylation of Fas and subsequent events in the Fas pathway, and reveal the correlation between Fas S-nitrosylation and nNOS activation in the rat hippocampal CA1 region after global cerebral ischemia. The results showed that GSNO pre-treatment not only facilitated the survival of hippocampal CA1 pyramidal neurons, but also abolished the activation of pro-apoptotic Caspase-8, Bid, Caspase-9 and Caspase-3. ⋯ In addition, pre-administration of GSNO decreased the translocation of Fas to membrane, the formation of CD95(hi) on the membrane, the internalization of Fas aggregates to plasma, as well as the assembly of DISC/hiDISC. These results indicate that GSNO-induced nNOS inactivation associates with the down-regulation of Fas S-nitrosylation and consequent Fas signal cascade, which is responsible for the GSNO-mediated neuronal survival after brain ischemia. The understanding of GSNO neuroprotection provides a novel strategy to find potential therapeutic targets for ischemic stroke.
-
Recently, we have shown the expression of novel chemoreceptors corresponding to the olfactory receptor (OR) and taste receptor (TASR) families in the human brain. We have also shown dysregulation of ORs and TASRs in the cerebral cortex in Parkinson's disease. The present study demonstrates the presence of OR mRNA and mRNA of obligated downstream components of OR signaling adenylyl cyclase 3 (ADYLC3) and olfactory G protein (Gnal) in the cerebral cortex of the mouse. ⋯ Altered OR, ADYLC3 and Gnal mRNA expression with disease progression has also been found in APP/PS1 transgenic mice, used as a model of AD. The function of these orphan receptors is not known, but probably related to cell signaling pathways responding to unidentified ligands. Variability in the drift, either down- or up-regulation, of dysregulated genes, suggests that central ORs and TASRs are vulnerable to variegated neurodegenerative diseases with cortical involvement, and that altered expression of ORs and TASRs is not a mere reflection of neuronal loss but rather a modulated pathological response.
-
Tropisetron, a selective 5-HT3 receptor (5-HT3R) antagonist, has been widely used to counteract chemotherapy-induced emesis. New investigations described the immunomodulatory properties of tropisetron which may not be 5HT3R mediated. In the present study, we assessed the potential effects of tropisetron on an animal model of multiple sclerosis (MS), experimental autoimmune encephalomyelitis (EAE). ⋯ Concurrent administration of tropisetron and mCPBG did not significantly alter the histological damage in the spinal cord. mCPBG had no effect on the mentioned parameters. Taken together, these findings indicate that tropisetron has considerable immunoregulatory functions in EAE and may be promising for the treatment of MS or other autoimmune and inflammatory diseases of the CNS. Furthermore, beneficial effects of tropisetron in this setting seem to be both receptor dependent and receptor independent in the early phase of the disease.
-
An increasing number of studies indicate that there exists greater diversity of cortical neurons than previously appreciated. In the present report, we use a combination of physiological and morphological methods to characterize cortical neurons in infragranular layers with apical dendrites pointing toward the white-matter compared to those neurons with apical dendrites pointing toward the pia in both mouse and rat neocortex. ⋯ These data reveal that similar cell types in the rat and mouse may not always share similar physiological and morphological properties. These data are relevant to models of information processing through micro- and larger neocortical circuits and indicate that different cell types found within similar lamina can have different functional properties.