Neuroscience
-
Numerous studies have shown that human endogenous retrovirus W family (HERV-W) envelope gene (env) is related to various diseases but the underlying mechanism has remained poorly understood. Our previous study showed that there was abnormal expression of HERV-W env in sera of patients with schizophrenia. In this paper, we reported that overexpression of the HERV-W env elevated the levels of small conductance Ca(2+)-activated K(+) channel protein 3 (SK3) in human neuroblastoma cells. ⋯ In addition, it was also found that the SK3 channel was activated by HERV-W env. Further study indicated that cAMP response element-binding protein (CREB) was required for the activation of the SK3 channel. Thus, a novel signaling mechanism of how HERV-W env influences neuronal activity and contributes to mental illnesses such as schizophrenia was proposed.
-
A growing interest in sensory system plasticity in the natural context of motherhood has created the need to investigate how intrinsic physiological state (e.g., hormonal, motivational, etc.) interacts with sensory experience to drive adaptive cortical plasticity for behaviorally relevant stimuli. Using a maternal mouse model of auditory cortical inhibitory plasticity for ultrasonic pup calls, we examined the role of pup care versus maternal physiological state in the long-term retention of this plasticity. Very recent experience caring for pups by Early Cocarers, which are virgins, produced stronger call-evoked lateral-band inhibition in auditory cortex. ⋯ A two-alternative choice phonotaxis task revealed that the same animal groups (Early Cocarers and Mothers) demonstrating stronger lateral-band inhibition also preferred pup calls over a neutral sound, a correlation consistent with the hypothesis that this inhibitory mechanism may play a mnemonic role and is engaged to process sounds that are particularly salient. Our electrophysiological data hint at a possible mechanism through which the maternal physiological state may act to preserve the cortical plasticity: selectively suppressing detrimental spontaneous activity in neurons that are responsive to calls, an effect observed only in Mothers. Taken together, the maternal physiological state during the care of pups may help maintain the memory trace of behaviorally salient infant cues within core auditory cortex, potentially ensuring a more rapid induction of future maternal behavior.
-
The parasympathetic control of heart rate arises from premotor cardiac vagal neurons (CVNs) located in the nucleus ambiguus (NA). Previous microinjection studies in NA show that dopamine evokes a decrease in heart rate, but the underlying mechanisms responsible for these responses were not identified. This study tested whether dopamine modulates inhibitory GABAergic and glycinergic and/or excitatory glutamatergic neurotransmission to CVNs. ⋯ Dopamine evoked responses were mimicked by the D2-like receptor agonist, Quinpirole but not D1-like receptor agonist, SKF 38393. In addition, the dopamine mediated depression of inhibitory synaptic responses were prevented by the D2-like receptor antagonist sulpiride, but not by D1-like or adrenergic or serotonergic receptor antagonists, suggesting that these responses were D2-like receptor mediated and not D1-like or adrenergic or 5-HT receptor mediated. These data suggest that dopamine acts via dis-inhibition, and diminishes inhibitory GABAergic and glycinergic neurotransmission to CVNs, which would be predicted to increase parasympathetic activity to the heart and evoke a bradycardia.
-
The kinin-B2 receptor (B2BKR) activated by its endogenous ligand bradykinin participates in various metabolic processes including the control of arterial pressure and inflammation. Recently, functions for this receptor in brain development and protection against glutamate-provoked excitotoxicity have been proposed. Here, we report neuroprotective properties for bradykinin against organophosphate poisoning using acute hippocampal slices as an in vitro model. ⋯ On the other hand pralidoxime, an oxime, reactivating acetylcholinesterase (AChE) after organophosphate poisoning, induced population spike recovery after DFP exposure in the presence of bradykinin and Lys-des-Arg(9)-bradykinin. Lys-des-Arg(9)-bradykinin did not revert protection exerted by pralidoxime, however when instead bradykinin and Ly-des-Arg(9)-bradykinin were superfused together, recovery of population spikes diminished. These findings again confirm the neuroprotective feature of bradykinin, which is, diminished by its endogenous metabolites, stimulating the B1BKR, providing a novel understanding of the physiological roles of these receptors.
-
Lysophosphatidic acid (LPA) has been considered one of the molecular culprits for neuropathic pain. Understanding how LPA changes the function of primary afferent fibers might be an essential step for clarifying the pathogenesis of neuropathic pain. The present study was designed to identify the primary afferent fibers (Aβ, Aδ, or C) participating in LPA-induced allodynia in ddY mice. ⋯ Expression of TRPV1 on myelinated nerve fibers after repeated intrathecal LPA treatment was observed in the dorsal root ganglion. These results suggest that sensitization of Aβ and Aδ fibers, but not C fibers, contributes to the development of intrathecally administered LPA-induced mechanical allodynia. Moreover, increased or newly expressed TRPV1 receptors in Aβ and Aδ fibers are considered to be involved in the maintenance of LPA-induced allodynia.