Neuroscience
-
Because consumption of processed foods has increased in the last decades and so far its potential influence on emotionality and susceptibility to stress is unknown, we studied the influence of different fatty acids (FA) on behavioral and biochemical parameters after acute restrain stress (AS) exposure. Two sequential generations of female rats were supplemented with soybean oil (control group; C-SO), fish oil (FO) and hydrogenated vegetable fat (HVF) from pregnancy and during lactation. At 41days of age, half the animals of each supplemented group were exposed to AS and observed in open field and elevated plus maze task, followed by euthanasia for biochemical assessments. ⋯ Among groups exposed to AS, HVF increased reactive species generation in the brain, decreased cell viability in the cortex and striatum, and decreased catalase activity in the striatum and hippocampus. Taken together, our findings show that the type of FA provided during development and growth over two generations is able to modify the brain oxidative status, which was particularly adversely affected by trans fat. In addition, the harmful influence of chronic consumption of trans fats as observed in this study can enhance emotionality and anxiety parameters resulting from stressful situations of everyday life, which can trigger more severe neuropsychiatric conditions.
-
Recent clinical trials have demonstrated that treatment with selective serotonin reuptake inhibitors after stroke enhances motor functional recovery; however, the underlying mechanisms remain to be further elucidated. We hypothesized that daily administration of the clinical drug citalopram would produce these functional benefits via enhancing neurovascular repair in the ischemic peri-infarct region. To test this hypothesis, focal ischemic stroke was induced in male C57/B6 mice by permanent ligation of distal branches of the middle cerebral artery to the barrel cortex and 7-min occlusion of the bilateral common carotid arteries. ⋯ The number of proliferating neural progenitor cells and the distance of neuroblast migration from the sub-ventricular zone toward the ischemic cortex were significantly greater in citalopram-treated mice at 7 days after stroke. Immunohistochemical staining and co-localization analysis showed that citalopram-treated animals generated more new neurons and microvessels in the peri-infarct region 21 and 28 days after stroke. Taken together, these results suggest that citalopram promotes post-stroke sensorimotor recovery likely via enhancing neurogenesis, neural cell migration and the microvessel support in the peri-infarct region of the ischemic brain.
-
Theiler's murine encephalomyelitis virus (TMEV) induces demyelination in susceptible strains of mice through a CD4(+) Th1 T cell-mediated immunopathological process. TMEV infection produces a syndrome in mice that resembles multiple sclerosis. In this work, we focused on the increased expression of the genes encoding voltage-gated Ca(2+) channel subunits in SJL/J mouse astrocytes infected in culture with a BeAn strain of TMEV. ⋯ TMEV infection in mouse astrocytes induced a Ca(2+) current with a density proportional to the amount of viral particles used for infection. The use of Ca(2+) channel blockers, nimodipine and ω-conotoxin-GVIA, showed that both functional L- and N-type Ca(2+) channels were upregulated in infected astrocytes. The upregulation of Ca(2+) channels in astrocytes after TMEV infection provides insight into the molecular processes and potential role of astrocyte Ca(2+) dysregulation in the pathophysiology of encephalomyelitis and is important for the development of novel therapeutic strategies leading to prevention of neurodegeneration.
-
Adult neurogenesis occurs throughout life; however the majority of new neurons do not survive. Enhancing the survival of these new neurons will increase the likelihood that these neurons could return function following injury. Inhibition of Rho kinase is known to increase neurite outgrowth and regeneration. ⋯ These mice also demonstrated enhanced spatial memory as tested by the Y maze with no significant changes in anxiety or novel object recognition. Rho kinase inhibition enhanced the survival of new born neurons in the dentate gyrus with a specific dosage effect. These results suggest that inhibition of Rho kinase following injury could be beneficial for increasing the survival of new neurons that may aid recovery.
-
The neurobiological mechanisms underlying the suppression of neuropathic pain by spinal cord stimulation (SCS) are still incompletely known. The present study aims at exploring whether the descending pain control system in the rostroventromedial medulla (RVM) exerts a role in the attenuation of neuropathic pain by SCS. Experiments were performed in the rat spared nerve injury (SNI) pain model. ⋯ In awake SNI animals, microinjection of a GABAA receptor agonist, muscimol, into the RVM significantly attenuated the antihypersensitivity effect induced by SCS while a non-selective opioid receptor antagonist, naltrexone, was ineffective. It is concluded that SCS may shift the reciprocal inhibitory and facilitatory pain modulation balance controlled by the RVM in favor of inhibition. This increase in the descending antinociceptive effect operates in concert with segmental spinal mechanisms in producing pain relief.