Neuroscience
-
Adolescence is a time of continued brain maturation, particularly in limbic and cortical regions, which undoubtedly plays a role in the physiological and emotional changes coincident with adolescence. An emerging line of research has indicated that stressors experienced during this crucial developmental stage may affect the trajectory of this neural maturation and contribute to the increase in psychological morbidities, such as anxiety and depression, often observed during adolescence. ⋯ More specifically, we examine how stress at prepubertal and early adolescent stages of development affects the morphological plasticity of limbic and cortical brain regions, as well as the enduring effects of adolescent stress exposure on these brain regions in adulthood. We suggest that, due to a number of converging factors during this period of maturation, the adolescent brain may be particularly sensitive to stress-induced neurobehavioral dysfunctions with important consequences on an individual's immediate and long-term health and well-being.
-
Randomized Controlled Trial
Reduced nucleus accumbens reactivity and adolescent depression following early-life stress.
Depression is a common outcome for those having experienced early-life stress (ELS). For those individuals, depression typically increases during adolescence and appears to endure into adulthood, suggesting alterations in the development of brain systems involved in depression. Developmentally, the nucleus accumbens (NAcc), a limbic structure associated with reward learning and motivation, typically undergoes dramatic functional change during adolescence; therefore, age-related changes in NAcc function may underlie increases in depression in adolescence following ELS. ⋯ Additionally, functional magnetic resonance imaging results showed atypical NAcc development, where the ELS group did not show a typical increase in NAcc reactivity during adolescence. Consequently, the ELS group showed NAcc hypoactivation during adolescence, and lower NAcc reactivity was correlated with higher depression scores. The results have important implications for understanding how ELS may influence increases in depression via neural development during the transition to adolescence and highlight the importance of identifying at-risk individuals in childhood, a potential critical period for depression-targeted intervention.
-
Review
The effects of abused drugs on adolescent development of corticolimbic circuitry and behavior.
Adolescence is a period of significant neurobiological change that occurs as individuals transition from childhood to adulthood. Because the nervous system is in a relatively labile state during this stage of development, it may be especially sensitive to experience-induced plasticity. ⋯ Whenever possible, our focus is on studies that use comparison groups of adolescent- and adult-exposed subjects as this is a more direct test of the hypothesis that adolescence represents a period of enhanced vulnerability to the effects of drug-induced plasticity. Lastly, we suggest areas of future investigation that are needed and methodological concerns that should be addressed.
-
Various studies have shown that increased activity of the hypothalamic-pituitary-adrenal (HPA) axis can predict the onset of adolescent depressive symptomatology. We have previously shown that adolescents making the transition to high school present a significant increase in cortisol levels, the main product of HPA axis activation. In the present study, we evaluated whether a school-based education program developed according to the current state of knowledge on stress in psychoneuroendocrinology decreases cortisol levels and/or depressive symptoms in adolescents making the transition to high school. ⋯ The results show that only adolescents starting high school with high levels of anger responded to the intervention with a significant decrease in cortisol levels. Moreover, we found that adolescents who took part in the intervention and showed decreasing cortisol levels following the intervention (responders) were 2.45 times less at risk to suffer from clinical and subclinical depressive states three months post-intervention in comparison to adolescents who showed increasing cortisol levels following the intervention (nonresponders). This study provides the first evidence that a school-based program on stress is effective at decreasing cortisol levels and depressive symptomatology in adolescents making the transition to high school and it helps explain which adolescents are sensitive to the program and what are some of the characteristics of these individuals.
-
It is well-known that the onset of puberty is associated with changes in mood as well as cognition. Stress can have an impact on these outcomes, which in many cases, can be more influential in females, suggesting that gender differences exist. The adolescent period is a vulnerable time for the onset of certain psychopathologies, including anxiety disorders, depression and eating disorders, which are also more prevalent in females. ⋯ Spatial learning and synaptic plasticity are also adversely impacted at puberty, likely a result of increased expression of α4βδ GABARs on the dendritic spines of CA1 hippocampal pyramidal cells, which are essential for consolidation of memory. This review will focus on the role of these receptors in mediating behavioral changes at puberty. Stress-mediated changes in mood and cognition in early adolescence may have relevance for the expression of psychopathologies in adulthood.