Neuroscience
-
Cortical sensory representations can be reorganized by sensory exposure in an epoch of early development. The adaptive role of this type of plasticity for natural sounds in sensory development is, however, unclear. We have reared rats in a naturalistic, complex acoustic environment and examined their auditory representations. ⋯ A comparison of population-temporal responses to the experienced complex sounds revealed that cortical responses to different renderings of the same song motif were more similar, indicating that the cortical neurons became less sensitive to natural acoustic variations associated with stimulus context and sound renderings. By contrast, cortical responses to sounds of different motifs became more distinctive, suggesting that cortical neurons were tuned to the defining features of the experienced sounds. These effects lead to emergent "categorical" representations of the experienced sounds, which presumably facilitate their recognition.
-
Recently it has been suggested that the neurohormone prolactin (PRL) could act on the afferent nociceptive neurons. Indeed, PRL sensitizes transient receptor potential vanilloid 1 (TRPV1) channels present in nociceptive C-fibers and consequently reduces the pain threshold in a model of inflammatory pain. Accordingly, high plasma PRL levels in non-lactating females have been associated with several painful conditions (e.g. migraine). ⋯ However, the activities of nociceptive Ad-fibers and C-fibers were: (i) increased by NS-PRL and (ii) diminished by S-PRL. Either NS-PRL or S-PRL enhanced the post-discharge activity. Taken together, these results suggest that PRL from S or NS lactating rats could either facilitate or depress the nociceptive responses of spinal dorsal horn cells, depending on the physiological state of the rats.
-
Bradykinin (BK) and its receptors (B1 and B2) may exert a role in the pathophysiology of certain CNS diseases, including epilepsy. In healthy tissues, B2 receptors are constitutively and widely expressed and B1 receptors are absent or expressed at very low levels, but both receptors, particularly B1, are up-regulated under many pathological conditions. Available data support the notion that up-regulation of B1 receptors in brain areas like the amygdala, hippocampus and entorhinal cortex favors the development and maintenance of an epileptic condition. ⋯ In this study, we used two different models to investigate the susceptibility to seizures of B1 knockout (KO) and B2 KO mice. We found that B1 KO are more susceptible to seizures compared with wild-type (WT) mice, and that this may depend on B2 receptors, in that (i) B2 receptors are overexpressed in limbic areas of B1 KO mice, including the hippocampus and the piriform cortex; (ii) hippocampal slices prepared from B1 KO mice are more excitable than those prepared from WT controls, and this phenomenon is B2 receptor-dependent, being abolished by B2 antagonists; (iii) kainate seizure severity is attenuated by pretreatment with a non-peptide B2 antagonist in WT and (more effectively) in B1 KO mice. These data highlight the possibility that B2 receptors may have a role in the responsiveness to epileptogenic insults and/or in the early period of epileptogenesis, that is, in the onset of the molecular and cellular events that lead to the transformation of a normal brain into an epileptic one.
-
Review
Prenatal ontogeny as a susceptibility period for cortical GABA neuron disturbances in schizophrenia.
Cognitive deficits in schizophrenia have been linked to disturbances in GABA neurons in the prefrontal cortex (PFC). Furthermore, cognitive deficits in schizophrenia appear well before the onset of psychosis and have been reported to be present during early childhood and even during the first year of life. Taken together, these data raise the following question: Does the disease process that produces abnormalities in prefrontal GABA neurons in schizophrenia begin prenatally and disrupt the ontogeny of cortical GABA neurons? Here, we address this question through a consideration of evidence that genetic and/or environmental insults that occur during gestation initiate a pathogenetic process that alters cortical GABA neuron ontogeny and produces the pattern of GABA neuron abnormalities, and consequently cognitive difficulties, seen in schizophrenia. ⋯ Third, we discuss recent studies demonstrating altered expression of these ontogenetic factors in the PFC in schizophrenia. Fourth, we discuss the potential role of disturbances in the maternal-fetal environment such as maternal immune activation in the development of GABA neuron dysfunction. Finally, we propose critical questions that need to be answered in future research to further investigate the role of altered GABA neuron ontogeny in the pathogenesis of schizophrenia.
-
Withdrawal from opiates, such as heroin or oral narcotics, is characterized by a host of aversive physical and emotional symptoms. High rates of relapse and limited treatment success rates for opiate addiction have prompted a search for new approaches. For many opiate addicts, achieving abstinence may be further complicated by poly-drug use and co-morbid mental disorders. ⋯ This review will summarize the literature surrounding the molecular effects of cannabinoids and opioids on the locus coeruleus-norepinephrine system, a key circuit implicated in the negative sequelae of opiate addiction. A consideration of the trends and effects of marijuana use in those seeking treatment to abstain from opiates in the clinical setting will also be presented. In summary, the present review details how cannabinoid-opioid interactions may inform novel interventions in the management of opiate dependence and withdrawal.