Neuroscience
-
The transmembrane α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor regulatory proteins (TARPs) are a family of auxiliary AMPA receptor subunits that differentially modulate trafficking and many functional properties of the receptor. To investigate which TARP isoforms may be involved in AMPA receptor-mediated spinal synaptic transmission, we have mapped the localization of five of the known TARP isoforms, namely γ-2 (also known as stargazin), γ-3, γ-4, γ-7 and γ-8, in the rat spinal cord. Immunoblotting showed expression of all isoforms in the spinal cord to varying degrees. ⋯ Synaptic immunogold labeling of γ-2 was sparse throughout the dorsal horn, with some primary afferent synapses weakly labeled, whereas relatively strong γ-7 immunogold labeling was found at deep dorsal horn synapses, including at synapses formed by low-threshold mechanosensitive primary afferent terminals. Prominent immunogold labeling of γ-8 was frequently detected at synapses established by primary afferent fibers. The spinal localization patterns of TARP isoforms reported here suggest that AMPA receptors at spinal synaptic populations and in glial cells may exhibit different functional characteristics owing to differences in auxiliary subunit composition.
-
Recent studies indicate that adiponectin can attenuate cerebral ischemic lesions via its functional area located in the C-terminal globular domain, which is called globular adiponectin (gAD). However, the mechanisms underlying this action remain unclear. In this study, we investigated the antioxidant properties of gAD during cerebral ischemia. ⋯ Furthermore, the activities of SOD and catalase increased, and the content of MDA reduced. However, TBCA blocked the effect of gAD on cerebral protection and its antioxidant abilities. Taken together, these results demonstrate that the neuroprotective action of gAD may result from the promotion of antioxidant capacity by inhibiting the NOX2 signaling system.
-
The neuregulin 1 gene has repeatedly been identified as a susceptibility gene for schizophrenia, thus mice with genetic mutations in this gene offer a valuable tool for studying the role of neuregulin 1 in schizophrenia-related neurotransmission. In this study, slide-based receptor autoradiography was used to quantify glutamatergic N-methyl-d-aspartate (NMDA), dopaminergic D2, cannabinoid CB1 and acetylcholine M1/4 receptor levels in the brains of male heterozygous transmembrane domain neuregulin 1 mutant (Nrg1(+/-)) mice at two ages. Mutant mice expressed small but significant increases in NMDA receptor levels in the cingulate cortex (7%, p=0.044), sensory cortex (8%, p=0.024), and motor cortex (8%, p=0.047), effects that were independent of age. ⋯ While there was a borderline significant increase (6%, p=0.058) in cannabinoid CB1 receptor levels in the substantia nigra of Nrg1(+/-) mice compared to controls, CB1 as well as acetylcholine M1/4 receptors showed no change in Nrg1(+/-) mice in any other brain region examined. These data indicate that a Nrg1 transmembrane mutation produces selective imbalances in glutamatergic and dopaminergic neurotransmission, which are two key systems believed to contribute to schizophrenia pathogenesis. While the effects on these systems are subtle, they may underlie the susceptibility of these mutants to further impacts.
-
The role of inflammation in inducing visceral hypersensitivity (VHS) in ulcerative colitis patients remains unknown. We tested the hypothesis that acute ulcerative colitis-like inflammation does not induce VHS. However, it sets up molecular conditions such that chronic stress following inflammation exaggerates single-unit afferent discharges to colorectal distension. ⋯ DSS-inflammation did not affect the composition or excitation thresholds of low-threshold and high-threshold fibers. Chronic stress following inflammation increased the percent composition of high-threshold fibers and lowered the excitation threshold of both types of fibers. We conclude that not all types of inflammation induce VHS, whereas chronic stress induces VHS in the absence of inflammation.
-
To examine the effect of glucose on the cerebral metabolism of glutamine, rat brain slices were incubated with 5mM [3-(13)C]glutamine without and with 5mM unlabeled glucose. Tissue plus medium extracts were analyzed by using enzymatic and (13)C NMR techniques and fluxes through the enzymatic steps involved were calculated with a mathematical model. ⋯ The results indicate that 77% of the newly appeared glutamine was formed via glutamine synthetase and 23% from endogenous sources; the stimulation of [3-(13)C]glutamine removal by MSO also strongly suggests the existence of a cycle between [3-(13)C]glutamine and [3-(13)C]glutamate. This work also demonstrates that glucose increased fluxes through hexokinase, pyruvate kinase, lactate dehydrogenase, alanine aminotransferase, pyruvate carboxylase, pyruvate dehydrogenase, citrate synthase, flux from α-ketoglutarate to glutamate and flux through glutamine synthetase whereas it inhibited fluxes through aspartate aminotransferase, glutamic acid decarboxylase and GABA aminotransferase.