Neuroscience
-
Synapsins are a family of synaptic vesicle (SV)-associated phosphoproteins that have been identified in several vertebrates and invertebrates. We report here the cloning and expression of synapsin family genes in the zebrafish Danio rerio. ⋯ As very few data are available describing the expression of synapsin family genes during CNS development in vertebrate models, our results may help to achieve a better understanding of the complex functions of these molecules. Finally, new interesting evidence from our temporal gene expression studies suggests that synapsins have also maternal functions.
-
Animal work implicates the brain-derived neurotrophic factor (BDNF) in function of the ventral striatum (VS), a region known for its role in processing valenced feedback. Recent evidence in humans shows that BDNF Val66Met polymorphism modulates VS activity in anticipation of monetary feedback. However, it remains unclear whether the polymorphism impacts the processing of self-attributed feedback differently from feedback attributed to an external agent. ⋯ The IFJ response to SA losses also differentiated Val/Val from Met carriers. These results may point to a reduced allocation of attention and altered motivational salience to SA losses in Val/Val compared to Met carriers. Implications for major depressive disorder are discussed.
-
Chronic stress is an established risk factor in the development of addiction. Addiction is characterized by a progressive transition from casual drug use to habitual and compulsive drug use. The ability of chronic stress to facilitate the transition to addiction may be mediated by increased engagement of the neurocircuitries underlying habitual behavior and addiction. ⋯ A parallel shift toward habitual learning strategies following chronic stress was also identified. There was an initial reduction in acute locomotor response to methamphetamine, but no lasting effect as a result of chronic stress exposure. These findings suggest that chronic stress may facilitate the recruitment of habit- and addiction-related neurocircuitries through neuronal restructuring in the striatum.
-
Age-associated memory impairments may result as a consequence of neuroinflammatory induction of intracellular calcium (Ca(+2)) dysregulation. Altered L-type voltage-dependent calcium channel (L-VDCC) and ryanodine receptor (RyR) activity may underlie age-associated learning and memory impairments. Various neuroinflammatory markers are associated with increased activity of both L-VDCCs and RyRs, and increased neuroinflammation is associated with normal aging. ⋯ Here, we examined whether pharmacological blockade of L-VDCCs or RyRs with the drugs nimodipine and dantrolene, respectively, could improve spatial memory and reduce age-associated increases in microglia activation. Dantrolene and nimodipine differentially attenuated age-associated spatial memory deficits but were not anti-inflammatory in vivo. Furthermore, RyR gene expression was inversely correlated with spatial memory, highlighting the central role of Ca(+2) dysregulation in age-associated memory deficits.
-
Exposure to microgravity has been shown to result in damaging alterations to skeletal muscle, bones, and inner organs. In this study, we investigated the effects of microgravity by using a hindlimb unloading model (HUM) in mice. The characteristics of the lumbar spinal cords of HUM mice 30 days after hindlimb unloading were examined. ⋯ Genome-wide transcriptome analysis of the lumbar spinal cords of HUM mice showed decreased expression of genes encoding myelin, extracellular matrix, cytoskeleton, and cell adhesion proteins. Real-time polymerase chain reaction (PCR) confirmed reductions in the expression of mpz, pmp2, pmp22, and prx genes, which are involved in myelination, as well as decreases in the levels of genes encoding extracellular matrix molecules, including glycoproteins (matrix gla protein (MGP), osteoglycin (OGN), microfibrillar associated protein 5 (MFAP), and collagen, type IV, alpha 1 (COL4A)), proteoglycans (perlecan (heparan sulfate proteoglycan) (HSPG)), and metalloproteinases (lysyl oxidase (LOX)). Thus, our results showed that hindlimb unloading caused decreases in gray and white matter areas, changes in gene expression, alterations in myelination, and phenotypic modifications in glial cells in the lumbar spinal cords of mice.