Neuroscience
-
Chronic stress is an established risk factor in the development of addiction. Addiction is characterized by a progressive transition from casual drug use to habitual and compulsive drug use. The ability of chronic stress to facilitate the transition to addiction may be mediated by increased engagement of the neurocircuitries underlying habitual behavior and addiction. ⋯ A parallel shift toward habitual learning strategies following chronic stress was also identified. There was an initial reduction in acute locomotor response to methamphetamine, but no lasting effect as a result of chronic stress exposure. These findings suggest that chronic stress may facilitate the recruitment of habit- and addiction-related neurocircuitries through neuronal restructuring in the striatum.
-
Comparative Study
Distinct neurobehavioral dysfunction based on the timing of developmental binge-like alcohol exposure.
Gestational exposure to alcohol can result in long-lasting behavioral deficiencies generally described as fetal alcohol spectrum disorder (FASD). FASD-modeled rodent studies of acute ethanol exposure typically select one developmental window to simulate a specific context equivalent of human embryogenesis, and study consequences of ethanol exposure within that particular developmental epoch. Exposure timing is likely a large determinant in the neurobehavioral consequence of early ethanol exposure, as each brain region is variably susceptible to ethanol cytotoxicity and has unique sensitive periods in their development. ⋯ Finally, spatial memory performance and object exploration were affected in P7-exposed mice, but not E8-exposed mice. Our physiology and behavioral results are conceptually coherent with the neuroanatomical data attained from these same mice. Our results recognize both variable and shared effects of ethanol exposure timing on long-term circuit function and their supported behavior.
-
The "plasticity hypothesis" proposes that major depression is caused by morphological and biochemical modifications in neurons and astrocytes and those beneficial pharmacological effects of selective-serotonin-reuptake-inhibitors (SSRI) are at least partially associated with modifications of cellular communications between these cells. In this study we examined effects of the antidepressant fluoxetine on cultured astrocytes that were, in some cases, pretreated with dexamethasone, a cortisol analog known to trigger depressive disorder. Primary rat astrocytes were purified and treated with dexamethasone and the SSRI fluoxetine in physiological concentrations so that both drugs did not affect cell viability. ⋯ Intracellular IL-2 increased, while GDNF amount expression was diminished following dexamethasone treatment. Simultaneous administration of fluoxetine reversed dexamethasone-triggered IL-2 elevation but had no effect on decreased GDNF concentration. These results suggest that mobility and growth factor equilibrium of astrocytes are affected by dexamethasone and by fluoxetine and that fluoxetine could reverse some changes induced by dexamethasone.
-
Hypofunction of the N-methyl-D-aspartic acid receptor (NMDAr) has been considered to play a crucial role in the pathophysiology of schizophrenia. In rodent electroencephalogram (EEG) studies, non-competitive NMDAr antagonists have been reported to produce aberrant basal gamma band oscillation (GBO), as observed in schizophrenia. Aberrations in GBO power have attracted attention as a translational biomarker for the development of novel antipsychotic drugs. ⋯ Likewise, LY379268 (0.3-3 mg/kg), an metabotropic glutamate 2/3 receptor (mGlu2/3 receptor) agonist, reduced the GBO increase in a dose-dependent manner, which was antagonized by an mGlu2/3 receptor antagonist LY341495. These results suggest that an increase in cortical GBO power induced by NMDAr hypofunction can be attributed to the aberrant activities of both excitatory pyramidal neurons and inhibitory interneurons in local circuits. The aberrant cortical GBO power reflecting cortical network dysfunction observed in schizophrenia might be a useful biomarker for the discovery of novel antipsychotic drugs.
-
Lipoprotein lipase (LPL) is expressed at high levels in hippocampal neurons, although its function is unclear. We previously reported that LPL-deficient mice have learning and memory impairment and fewer synaptic vesicles in hippocampal neurons, but properties of synaptic activity in LPL-deficient neurons remain unexplored. ⋯ Moreover, lipid assay revealed deficient docosahexaenoic acid (DHA) and arachidonic acid (AA) in the hippocampus of LPL-deficient mice; exogenous DHA or AA supplement partially restored synaptic vesicle recycling capability. These results suggest that impaired synaptic vesicle recycling results from deficient DHA and AA and contributes to the presynaptic dysfunction and plasticity impairment in LPL-deficient neurons.