Neuroscience
-
Injury to the adult nervous system promotes the expression and secretion of brain-derived neurotrophic factor (BDNF). Because it promotes neuronal growth, survival and neurogenesis, BDNF may initiate compensatory processes that mitigate the deleterious effects of injury, disease or stress. Despite this, BDNF has been implicated in several injury-induced maladaptive processes including pain, spasticity and convulsive activity. ⋯ BDNF effects are confined to changes in synaptic transmission as there is little change in the passive or active properties of neurons in the superficial dorsal horn. Actions of BDNF in the brain stem and periphery also contribute to the onset and persistence of chronic pain. In spite of its role in compensatory processes that facilitate the recovery of the nervous system from injury, the widespread maladaptive actions of BDNF mean that there is literally "no gain without pain".
-
Hyperglycemia is a common phenomenon in the early phase of brain injury (BI). The management of blood glucose levels after BI, however, is subject of a growing debate. ⋯ Intensive glucose-lowering therapy, on the other hand, inevitably results in an increased rate of hypoglycemic episodes with detrimental effects on the injured brain. In this review, we give an overview on the current knowledge about causes and pathophysiological consequences of dysglycemia in patients with BI and offer some suggestions for clinical glucose management.
-
Brain-derived neurotrophic factor, BDNF, is one of the most important neurotrophic factors acting in the peripheral and central nervous system. In the auditory system its function was initially defined by using constitutive knockout mouse mutants and shown to be essential for survival of neurons and afferent innervation of hair cells in the peripheral auditory system. Further examination of BDNF null mutants also revealed a more complex requirement during re-innervation processes involving the efferent system of the cochlea. ⋯ Additionally, BDNF is required for maintenance of voltage-gated potassium channels (KV) in cochlear neurons, which may form part of a maturation step within the ascending auditory pathway with onset of hearing and might be essential for cortical acuity of sound-processing and experience-dependent plasticity. A presumptive harmful role of BDNF during acoustic trauma and consequences of a loss of cochlear BDNF during aging are discussed in the context of a partial reversion of this maturation step. We compare the potentially beneficial and harmful roles of BDNF for the mature auditory system with those BDNF functions known in other sensory circuits, such as the vestibular, visual, olfactory, or somatosensory system.
-
Nogo-A interaction with its different receptors (Nogo receptor 1 (NgR1), S1P receptor 2 (S1PR2), paired immunoglobulin-like receptor B (PirB)) restricts plasticity and growth-dependent processes leading, via the activation of different signaling pathway to the stabilization of the neuronal networks (either developmentally or during processes of memory consolation in the mature nervous system). Taking away these molecular brakes might allow for the induction of extensive structural and functional rearrangements and might promote compensatory growth processes after an injury of the CNS, in cortical structures as well as in the spinal cord. However, it is important to keep in mind that this could as well be a dangerous endeavor, since it might facilitate unwanted and unnecessary (and probably even maladaptive) neuronal connections.
-
Stress is an adaptive response to demands of the environment and thus essential for survival. Exposure to stress triggers hypothalamic-pituitary-adrenocortical (HPA) axis activation and associated neurochemical reactions, following glucocorticoid release from the adrenal glands, accompanied by rapid physiological responses. Stimulation of this pathway results in the activation of specific brain regions, including the hippocampus, amygdala and prefrontal cortex which are enriched with glucocorticoid receptors (GRs). ⋯ Whereas an optimal stress level leads to enhancement of memory performance, the exposure to extreme, traumatic or chronic stressors is a risk factor for psychopathologies which are associated with memory impairment and cognitive deficits such as posttraumatic stress disorder (PTSD). In this review article, we will outline the implications of stress exposure on memory formation involving the role of glucocorticoids and BDNF. Within this context, potential adverse effects of neuroplastic alterations will be discussed using the example of PTSD.