Neuroscience
-
Dopaminergic neurons in a range of species are responsive to sensory stimuli. In the anesthetized preparation, responses to non-noxious and noxious sensory stimuli are usually tonic in nature, although long-duration changes in activity have been reported in the awake preparation as well. However, in the awake preparation, short-latency, phasic changes in activity are most common. ⋯ At the forebrain level, sensory-related changes in the tonic activity of dopaminergic neurons may regulate the impact of the cortex on forebrain structures such as the nucleus accumbens. In contrast, the short latency of the phasic responses to sensory stimuli in dopaminergic neurons, coupled with the activation of these neurons by non-rewarding stimuli, suggests that phasic responses of dopaminergic neurons may provide a signal to the forebrain which indicates that a salient event has occurred (and possibly an estimate of how salient that event is). A stimulus-related salience signal could be used by downstream systems to reinforce behavioral choices.
-
Dopamine (DA) midbrain neurons project to several striatal and cortical target areas and are essentially involved in a puzzling variety of important brain functions such as action selection and motor performance, motivation and reward-based learning, but also working memory and cognition. These neurons act via the release of their (main) neurotransmitter, dopamine, which binds to metabotropic dopamine receptors of the D1 or D2 type on target neurons. Axonal but also dendritic dopamine release is essentially controlled by calcium-triggered exocytosis of dopamine-filled synaptic vesicles primarily driven by electrical activity of the dopamine neuron, which generates patterns of actions potentials in the somato-dendritic domain and distributes them along its axonal tree. ⋯ This review focuses on the properties of these phasic activity changes in midbrain DA neurons. It updates recent progress on the expanding behavioral contexts, associated with phasic electrical activity in DA neurons beyond the classical (canonical) reward prediction error model. The review also highlights recently defined contributions of synaptic inputs for burst and pause generation and the roles of distinct postsynaptic ion channels in midbrain DA neurons.
-
Midbrain dopamine systems play important roles in Parkinson's disease, schizophrenia, addiction, and depression. The participation of midbrain dopamine systems in diverse clinical contexts suggests these systems are highly complex. Midbrain dopamine regions contain at least three neuronal phenotypes: dopaminergic, GABAergic, and glutamatergic. ⋯ Rat VTA VGluT2 neurons exhibit intrinsic VTA projections and extrinsic projections to the accumbens and to the prefrontal cortex. Mouse VTA VGluT2 neurons project to accumbens shell, prefrontal cortex, ventral pallidum, amygdala, and lateral habenula. Given their molecular diversity and participation in circuits involved in addiction, we hypothesize that individual VGluT2 subpopulations of neurons play unique roles in addiction and other disorders.
-
Review
Neurotrophins in the ventral tegmental area: Role in social stress, mood disorders and drug abuse.
This review discusses the impact of neurotrophins and other trophic factors, including fibroblast growth factor and glial cell line-derived neurotrophic factor, on mood disorders, weight regulation and drug abuse, with an emphasis on stress- and drug-induced changes in the ventral tegmental area (VTA). Neurotrophins, comprising nerve growth factor, brain-derived neurotrophic factor (BDNF), and neurotrophins 3 and 4/5 play important roles in neuronal plasticity and the development of different psychopathologies. In the VTA, most research has focused on the role of BDNF, because other neurotrophins are not found there in significant quantities. ⋯ Social defeat stress that is continuous in mice or intermittent in rats increases VTA BDNF expression, and is associated with depressive and social avoidance behaviors. Intermittent social defeat stress induces persistent VTA BDNF expression that triggers psychostimulant cross-sensitization. Understanding the cellular and molecular substrates of neurotrophin effects may lead to novel therapeutic approaches for the prevention and treatment of substance use and mood disorders.
-
The ventral tegmental area (VTA) is a brain region processing salient sensory and emotional information, controlling motivated behaviors, natural or drug-related reward, reward-related learning, mood, and participating in their associated psychopathologies. Mostly studied for its dopamine neurons, the VTA also includes functionally important GABA and glutamate cell populations. Behavioral evidence supports the presence of functional differences between the anterior VTA (aVTA) and the posterior VTA (pVTA), which is the topic of this review. ⋯ This region, partly located within the pVTA, is an inhibitory control center for dopamine activity. It controls VTA and substantia nigra dopamine cells, thus exerting a major influence on basal ganglia functions. This review highlights the need for a more comprehensive analysis of VTA heterogeneity.