Neuroscience
-
Midbrain dopamine neurons fire irregularly, with interspersed clusters of high-frequency spikes, commonly called 'bursts'. In this review we examine such heterogeneity in activity, and provide insight into how it can participate in psychiatric conditions such as drug addiction. We first describe several techniques used to evaluate dopamine neuron activity, and comment on the different measures that each provides. ⋯ Drugs themselves change firing activity through a variety of mechanisms, with effects on firing while drug is present differing from those seen after drug discontinuation. We then review how stimuli that are rewarding, aversive, or salient can evoke changes in firing rate and discharge pattern of dopamine neurons, and provide behavioral relevance of dopamine signaling. Finally, we discuss how stress can modulate dopamine neuron firing and how this may contribute to the role that stressful experiences play in psychiatric disorders such as addiction and depression.
-
The nucleus accumbens (NAc) plays a pivotal role in reward and aversive learning and learning flexibility. Outputs of the NAc are transmitted through two parallel routes termed the direct and indirect pathways and controlled by the dopamine (DA) neurotransmitter. To explore how reward-based and avoidance learning is controlled in the NAc of the mouse, we developed the reversible neurotransmission-blocking (RNB) technique, in which transmission of each pathway could be selectively and reversibly blocked by the pathway-specific expression of transmission-blocking tetanus toxin and the asymmetric RNB technique, in which one side of the NAc was blocked by the RNB technique and the other intact side was pharmacologically manipulated by a transmitter agonist or antagonist. ⋯ Furthermore, reward and aversive learning is regulated by a set of common downstream receptors and signaling cascades, all of which are involved in the induction of long-term potentiation at cortico-accumbens synapses of the two pathways. In this article, we review our studies that specify the regulatory mechanisms of each pathway in learning behavior and propose a mechanistic model to explain how dynamic DA modulation promotes selection of actions that achieve reward-seeking outcomes and avoid aversive ones. The biological significance of the network organization consisting of two parallel transmission pathways is also discussed from the point of effective and prompt selection of neural outcomes in the neural network.
-
The ventral tegmental area (VTA) is a brain region processing salient sensory and emotional information, controlling motivated behaviors, natural or drug-related reward, reward-related learning, mood, and participating in their associated psychopathologies. Mostly studied for its dopamine neurons, the VTA also includes functionally important GABA and glutamate cell populations. Behavioral evidence supports the presence of functional differences between the anterior VTA (aVTA) and the posterior VTA (pVTA), which is the topic of this review. ⋯ This region, partly located within the pVTA, is an inhibitory control center for dopamine activity. It controls VTA and substantia nigra dopamine cells, thus exerting a major influence on basal ganglia functions. This review highlights the need for a more comprehensive analysis of VTA heterogeneity.
-
Dopamine D2-autoreceptors play a key role in regulating the activity of dopamine neurons and control the synthesis, release and uptake of dopamine. These Gi/o-coupled inhibitory receptors play a major part in shaping dopamine transmission. ⋯ Alterations in the expression and activity of autoreceptors are thought to contribute to Parkinson's disease as well as schizophrenia, drug addiction and attention-deficit hyperactivity disorder (ADHD), which emphasizes the importance of D2-autoreceptors in regulating the dopamine system. This review will summarize the cellular actions of dopamine autoreceptors and discuss recent advances that have furthered our understanding of the mechanisms by which D2-receptors control dopamine transmission.
-
Review
The heterogeneity of ventral tegmental area neurons: Projection functions in a mood-related context.
The ventral tegmental area (VTA) in the brain's reward circuitry is composed of a heterogeneous population of dopamine, GABA, and glutamate neurons that play important roles in mediating mood-related functions including depression. These neurons project to different brain regions, including the nucleus accumbens (NAc), the medial prefrontal cortex (mPFC), and the amygdala. The functional understanding of these projection pathways has been improved since the extensive use of advanced techniques such as viral-mediated gene transfer, cell-type-specific neurophysiology and circuit-probing optogenetics. In this article, we will discuss the recent progress in understanding these VTA projection-specific functions, focusing on mood-related disorders.