Neuroscience
-
β-Amyloid (Aβ) accumulation has been proved to be responsible for the pathogenesis of Alzheimer's disease (AD). However, it is not yet clear what makes Aβ accumulate and become toxic in the AD brains. Our previous studies demonstrated that glycated Aβ (Aβ-AGE) could be formed, and it exacerbated the authentic Aβ-mediated neurotoxicity in vitro, but we did not show the role of Aβ-AGE in vivo and the underlying mechanism. ⋯ We also observed the overexpression of receptor for advanced glycation endproducts receptor for AGEs (RAGE) and the activation of downstream molecular (GSK3, NF-κB, p38) in RAGE-mediated pathways. On the other hand, simultaneous application of RAGE antibody or GSK3 inhibitor LiCl reversed the cognitive decline amplified by Aβ-AGE. Our data revealed that in vivo the Aβ-AGE is more toxic than Aβ, and Aβ-AGE could lead to the aggravation of AD-like pathology though the RAGE pathway, suggesting that Aβ-AGE and RAGE may be new therapeutic targets for AD.
-
Angiogenin is a member of the ribonuclease superfamily and promotes degradation of the basement membrane and the extracellular matrix. After stroke in type one diabetes (T1DM) rats, Angiogenin is significantly increased and the Angiogenin is inversely correlated with functional outcome. Neamine, an aminoglycoside antibiotic, blocks nuclear translocation of Angiogenin, thereby abolishing the biological activity of Angiogenin. In this study, we therefore investigated the effect and underlying protective mechanisms of Neamine treatment of stroke in T1DM. ⋯ Neamine treatment of stroke is neuroprotective in T1DM rats. Inhibition of neuroinflammatory factor expression and decrease of BBB leakage may contribute to Neamine-induced neuroprotective effects after stroke in T1DM rats.
-
Tissue damage during the neonatal period evokes long-lasting changes in nociceptive processing within the adult spinal cord which contribute to persistent alterations in pain sensitivity. However, it remains unclear if the observed modifications in neuronal activity within the mature superficial dorsal horn (SDH) following early injury reflect shifts in the intrinsic membrane properties of these cells. Therefore, the present study was undertaken to identify the effects of neonatal surgical injury on the intrinsic excitability of both GABAergic and presumed glutamatergic neurons within lamina II of the adult SDH using in vitro patch clamp recordings from spinal cord slices prepared from glutamic acid decarboxylase-green fluorescent protein (Gad-GFP) mice. ⋯ Both Gad-GFP and non-GFP neurons displayed a significant elevation in rheobase and decreased instantaneous firing frequency after incision, suggesting that early tissue damage lowers the intrinsic membrane excitability of adult SDH neurons. Isolation of inward-rectifying K(+) (K(ir)) currents revealed that neonatal incision significantly increased K(ir) conductance near physiological membrane potentials in GABAergic, but not glutamatergic, lamina II neurons. Overall, these findings suggest that neonatal tissue injury causes a long-term dampening of intrinsic firing across the general population of lamina II interneurons, but the underlying ionic mechanisms may be cell-type specific.
-
In this study we were interested in the neural system supporting the audiovisual (AV) integration of emotional expression and emotional prosody. To this end normal participants were exposed to short videos of a computer-animated face voicing emotionally positive or negative words with the appropriate prosody. Facial expression of the face was either neutral or emotionally appropriate. ⋯ In trials showing emotional expressions compared to neutral trials univariate analysis showed activation primarily in bilateral amygdala, fusiform gyrus, middle temporal gyrus/superior temporal sulcus and inferior occipital gyrus. When employing either the left amygdala or the right amygdala as a seed region in RFX-GCM we found connectivity with the right hemispheric fusiform gyrus, with the indication that the fusiform gyrus sends information to the Amygdala. These results led to a working model for face perception in general and for AV-affective integration in particular which is an elaborated adaptation of existing models.
-
MicroRNA (miRNA) is a small non-coding RNA that regulates gene expression by degrading target mRNAs or inhibiting translation. Although many miRNAs play important roles in various conditions, it is unclear whether miRNAs are involved in motor nerve regeneration. ⋯ Furthermore, the luciferase assay and in vitro gain of function methods supported that both genes could be potent targets of miR-124. These results suggest that injury-induced repression of miR-124 may be implicated in the regulation of expression of several injury-associated transcription factors, which are crucial for appropriate nerve regeneration.