Neuroscience
-
Mitochondrial division inhibitor 1 (mdivi-1), a selective inhibitor of mitochondrial fission protein dynamin-related protein 1 (Drp1), has been reported to display neuroprotective properties in different animal models. In the present study, we investigated the protective effect of mdivi-1 on β-amyloid protein (Aβ)-induced cytotoxicity and its potential mechanisms in BV-2 and primary microglial cells. ⋯ Moreover, we also found that mdivi-1 treatment markedly reversed mitochondrial membrane potential loss, cytochrome c (CytC) release and caspase-3 activation. Altogether, our data suggested that mdivi-1 exerts neuroprotective effects against Aβ-induced microglial apoptosis, and the underlying mechanism may be through inhibiting mitochondrial membrane potential loss, CytC release and suppression of the mitochondrial apoptosis pathway.
-
MicroRNA (miRNA) is a small non-coding RNA that regulates gene expression by degrading target mRNAs or inhibiting translation. Although many miRNAs play important roles in various conditions, it is unclear whether miRNAs are involved in motor nerve regeneration. ⋯ Furthermore, the luciferase assay and in vitro gain of function methods supported that both genes could be potent targets of miR-124. These results suggest that injury-induced repression of miR-124 may be implicated in the regulation of expression of several injury-associated transcription factors, which are crucial for appropriate nerve regeneration.
-
α-Synuclein is the major component of Lewy bodies. α-Synuclein phosphorylated at Ser 129 (Phospho-α-Syn) is the most common synuclein modification observed in Parkinson's disease pathology and transgenic animal models. Polo-like kinase 2 (PLK2) was previously proposed as an important kinase in α-synuclein phosphorylation at Ser129. To better understand the role of PLK2 in α-synuclein phosphorylation in vivo, we further evaluated the effect of PLK2 genetic knockdown and pharmacological inhibition on Phospho-α-Syn levels in different brain regions of PLK2 knockout (KO), heterozygous (Het) and wild-type (WT) mice. ⋯ Whereas BI 2536 reduced Phospho-α-Syn levels in WT mice, it did not further reduce the residual endogenous Phospho-α-Syn levels in PLK2 KO and Het mice, suggesting that a kinase other than PLK1-3 accounts for the remaining PLK inhibitor-resistant pool in the mouse brain. Moreover, PLK3 KO in mice had no effect on both Total- and Phospho-α-Syn brain levels. These results support a significant role for a PLK kinase in phosphorylating α-synuclein at Ser129 in the brain, and suggest that PLK2 is responsible for this activity under physiological conditions.
-
Obesity resistance due to elevated orexin signaling is accompanied by high levels of spontaneous physical activity (SPA). The behavioral and neural mechanisms underlying this observation have not been fully worked out. We determined the contribution of hypothalamic orexin receptors (OXRs) to SPA stimulated by orexin A (OXA), whether OXA-stimulated SPA was secondary to arousal and whether voluntary wheel running led to compensations in 24-h SPA. ⋯ Obesity-resistant rats ran more and wheel running was directly related to 24-h SPA levels. The OX1R antagonist, SB-334867-A, and the DA1R antagonist, SCH3390, in SN more effectively reduced SPA stimulated by OXA in obesity-resistant rats. These data suggest OXA-stimulated SPA is not secondary to enhanced arousal, propensity for SPA parallels inclination to run and that orexin action on dopaminergic neurons in SN may participate in the mediation of SPA and running wheel activity.
-
Recent studies have demonstrated that transcranial direct current stimulation (tDCS) modulates cortical activity in the human brain. In the language domain, it has already been shown that during a naming task tDCS reduces vocal reaction times in healthy individuals and speeds up the recovery process in left brain-damaged aphasic subjects. In this study, we wondered whether tDCS would influence the ability to articulate tongue twisters during a repetition task. ⋯ No significant differences were observed among the three time points during the sham condition. We believe that these data clearly confirm that the left frontal region is critically involved in the process of speech repetition. They are also in line with recent evidence suggesting that frontal tDCS might be used as a therapeutic tool in patients suffering from articulatory deficits.