Neuroscience
-
Recent studies have demonstrated that transcranial direct current stimulation (tDCS) modulates cortical activity in the human brain. In the language domain, it has already been shown that during a naming task tDCS reduces vocal reaction times in healthy individuals and speeds up the recovery process in left brain-damaged aphasic subjects. In this study, we wondered whether tDCS would influence the ability to articulate tongue twisters during a repetition task. ⋯ No significant differences were observed among the three time points during the sham condition. We believe that these data clearly confirm that the left frontal region is critically involved in the process of speech repetition. They are also in line with recent evidence suggesting that frontal tDCS might be used as a therapeutic tool in patients suffering from articulatory deficits.
-
In the central nervous system, the normal development of neuronal circuits requires adequate temporal activation of receptors for individual neurotransmitters. Previous studies have demonstrated that α₂-adrenoceptor (α₂-AR) activation eliminates spontaneous action potentials of interneurons in the cerebellar molecular layer (MLIs) and subsequently reduces the frequency of spontaneous inhibitory postsynaptic currents (sIPSCs) in Purkinje cells (PCs) after the second postnatal week. The magnitude of the α₂-adrenergic reduction in sIPSC frequency is enhanced during the third postnatal week because of an increase in firing-derived sIPSCs. ⋯ After the second postnatal week, NA transiently increased the sIPSC frequency, whereas blocking α₂-ARs sustained the noradrenergic sIPSC facilitation and increase in the firing rate of MLIs, suggesting that α₂-AR activation suppresses the noradrenergic facilitation of GABAergic synaptic transmission. The simultaneous activation of α₁- and β-ARs by their specific agonists mimicked the persistent facilitation of sIPSC frequency, which required extracellular signal-regulated kinase 1/2 activation. These findings indicate that NA acts as a neurotrophic factor that strengthens GABAergic synaptic transmission in the developing cerebellar cortex and that α₂-ARs temporally restrain the noradrenergic facilitation of sIPSCs after GABAergic synaptogenesis.
-
Multisensory integration has been widely studied in neurons of the mammalian superior colliculus (SC). This has led to the description of various determinants of multisensory integration, including those based on stimulus- and neuron-specific factors. The most widely characterized of these illustrate the importance of the spatial and temporal relationships of the paired stimuli as well as their relative effectiveness in eliciting a response in determining the final integrated output. ⋯ The results show that neuronal responsiveness changes dramatically with changes in stimulus location - highlighting a marked heterogeneity in the spatial receptive fields of SC neurons. More importantly, this receptive field heterogeneity played a major role in the integrative product exhibited by stimulus pairings, such that pairings at weakly responsive locations of the receptive fields resulted in the largest multisensory interactions. Together these results provide greater insight into the interrelationship of the factors underlying multisensory integration in SC neurons, and may have important mechanistic implications for multisensory integration and the role it plays in shaping SC-mediated behaviors.
-
We have previously demonstrated that glucagon-like peptide-1 (GLP-1) receptor agonist ameliorated neurodegenerative changes in rat models of diabetes-related Alzheimer's disease (AD), and protected neurons from glucose toxicity in vitro. Herein, we investigated the effects of GLP-1 receptor mediates on cell toxicity and tau hyperphosphorylation induced by advanced glycation end products (AGEs), which are associated with glucose toxicity, and the molecular mechanism in PC12 cells and the primary hippocampal neurons. Our study demonstrated that the similar protection effects of GLP-1 existed in PC12 cells treated with glucose-bovine serum albumin (BSA) in hyperglycemic conditions or with glycoaldehyde-BSA alone. ⋯ And we found that GLP-1 could reduce cell tau phosphorylation induced by high glucose or glucose-BSA. Furthermore, our data in the present study suggested that GLP-1 regulated tau phosphorylation induced by AGEs through a signaling pathway involving glycogen synthase kinase 3β (GSK-3β), similarly to the GSK-3β inhibitor, lithium chloride. Our findings suggest that GLP-1 can protect neurons from diabetes-associated AGE insults in vitro, and provide new evidence for a potential therapeutic value of GLP-1 receptor agonist in the treatment of AD especially diabetes-related AD.
-
Sound envelope plays a crucial role in perception: ramped sounds (slow attack and quick decay) are louder in strength and longer in subjective duration than damped sounds (quick attack and slow decay) even if they are equal in intensity and physical duration. To explain the asymmetrical perception, the perceptual constancy hypothesis supposes that the listener eliminates the slow decay of damped sounds from the judgment of perception, while the persistence of perception hypothesis supposes asymmetrical neural responses after the source has stopped. To understand neural mechanisms underlying the perceptual asymmetry, we explored response properties of the primary auditory cortex (A1) neurons during ramped and damped stimuli in awake cats. ⋯ The former needs a short (<2.5 ms) period of stimulus duration for evoking maximal peak responses, while the latter needs a long (20 ms) period, suggesting that the timescale of processing underlies differential sensitivity between the cell types. The findings suggest that perceptual constancy is not yet be executed at A1 because the specific cells distinguishing the direction of amplitude change (attack or decay) are lacking in A1. On the other hand, there is evidence of persistence of perception: overall response duration during ramped sound reached 1.4 times longer than that during damped sound, originating mainly from the response asymmetry of the edge cell (sensitive to the quick decay of ramped sounds but not to the slow decay of damped sounds), and neuronal persistence of excitation after the termination of ramped sounds was substantially longer than that of damped sounds, corresponding to the psychological evidence of persistence of perception.