Neuroscience
-
Comparative Study
Comparative study of the neurotrophic effects elicited by VEGF-B and GDNF in preclinical in vivo models of Parkinson's disease.
Vascular endothelial growth factor B (VEGF-B) has recently been shown to be a promising novel neuroprotective agent for several neurodegenerative conditions. In the current study we extended previous work on neuroprotective potential for Parkinson's disease (PD) by testing an expanded dose range of VEGF-B (1 and 10 μg) and directly comparing both neuroprotective and neurorestorative effects of VEGF-B in progressive unilateral 6-hydroxydopamine (6-OHDA) PD models to a single dose of glial cell line-derived neurotrophic factor (GDNF, 10 μg), that has been established by several groups as a standard in both preclinical PD models. In the amphetamine-induced rotational tests the treatment with 1 and 10 μg VEGF-B resulted in significantly improved motor function of 6-OHDA-lesioned rats compared to vehicle-treated 6-OHDA-lesioned rats in the neuroprotection paradigm. ⋯ VEGF-B counteracted rotenone-induced reduction of (a) fatty acid transport protein 1 and 4 levels and (b) both Akt protein and phosphorylation levels in SH-SY5Y cells. We further verified VEGF-B expression in the human SN pars compacta of healthy controls and PD patients, in neuronal cells that show co-expression with neuromelanin. These results have demonstrated that VEGF-B has potential as a neuroprotective agent for PD therapy and should be further investigated.
-
The transient exposure of immature rodents to ethanol during postnatal day 7 (P7), comparable to a time point within the third trimester of human pregnancy, induces neurodegeneration. However, the molecular mechanisms underlying the deleterious effects of ethanol on the developing brain are poorly understood. In our previous study, we showed that a high dose administration of ethanol at P7 enhances G9a and leads to caspase-3-mediated degradation of dimethylated H3 on lysine 9 (H3K9me2). ⋯ Further, our immunoprecipitation data suggest that G9a directly associates with DNA methyltransferase (DNMT3A) and methyl-CpG-binding protein 2 (MeCP2). In addition, DNMT3A and MeCP2 protein levels were enhanced by a low dose of ethanol that was shown to induce mild neurodegeneration. Collectively, these epigenetic alterations lead to association of G9a, DNMT3A and MeCP2 to form a larger repressive complex and have a significant role in low-dose ethanol-induced neurodegeneration in the developing brain.
-
It has been argued that arm movements are important during human gait because they affect leg activity due to neural coupling between arms and legs. Consequently, one would expect that locomotor-like alternating arm swing is more effective than in-phase swing in affecting the legs' motor output. Other alternating movements such as trunk rotation associated to arm swing could also affect leg reflexes. ⋯ Furthermore, this modulation was independent from electromyographic activity, suggesting a spinal processing at premotoneuronal level. Therefore, trunk movement can affect legs' output, and a special neural coupling occurs between arms and legs when arms move in alternation. This may have implications for gait rehabilitation.
-
Although it is a general consensus that opioids modulate growth, the mechanism of this phenomenon is largely unknown. Since endogenous opiates use the same receptor family as morphine, these peptides may be one of the key regulators of growth in humans by impacting growth hormone (GH) secretion, either directly, or indirectly, via growth hormone-releasing hormone (GHRH) release. However, the exact mechanism of this regulation has not been elucidated yet. ⋯ In contrast, no significant dynorphinergic-GHRH associations were detected. The density of the abutting enkephalinergic fibers on the surface of the GHRH perikarya suggests that these juxtapositions may be functional synapses and may represent the morphological substrate of the impact of enkephalin on growth. The small number of GHRH neurons innervated by the endorphin and dynorphin systems indicates significant differences between the regulatory roles of endogenous opiates on growth in humans.
-
Subjective tinnitus is a chronic neurological disorder in which phantom sounds are perceived. Recent evidence supports the hypothesis that tinnitus is related to neuronal hyperactivity in auditory brain regions, and consequently drugs that increase GABAergic neurotransmission in the CNS, such as the GABA(B) receptor agonist L-baclofen, may be effective as a treatment. ⋯ However, l-baclofen failed to prevent the development of tinnitus when administered during the first 5 days following the acoustic trauma and also failed to reverse it when treatment was carried out every day for 4.5 weeks. We also found that treatment with L-baclofen did not alter the expression of the GABA(B)-R2 subunit in the cochlear nucleus of noise-exposed animals.