Neuroscience
-
We investigated in this study the pharmacological properties of AC-3933 (5-(3-methoxyphenyl)-3-(5-methyl-1,2,4-oxadiazol-3-yl)-1,6-naphthyridin-2(1H)-one), a novel benzodiazepine receptor (BzR) partial inverse agonist. AC-3933 potently inhibited [3H]-flumazenil binding to rat whole brain membrane with a Ki value of 5.15 ± 0.39 nM and a GABA ratio of 0.84 ± 0.03. AC-3933 exhibited almost no affinity for the other receptors, transporters and ion channels used in this study. ⋯ AC-3933 (0.1-10 μM) significantly enhanced KCl-evoked acetylcholine (ACh) release from rat hippocampal slices in a concentration-dependent manner. Moreover, in vivo brain microdialysis showed that intragastric administration of AC-3933 at the dose of 10 mg/kg significantly increased extracellular ACh levels in the hippocampus of freely moving rats (area under the curve (AUC₀₋₂ h) of ACh level; 288.3% of baseline). These results indicate that AC-3933, a potent and selective BzR inverse agonist with low intrinsic activity, might be useful in the treatment of cognitive disorders associated with degeneration of the cholinergic system.
-
This study was designed to examine the effect of voluntary exercise on hippocampal long-term potentiation (LTP) in morphine-dependent rats. The rats were randomly distributed into the saline-sedentary (Sal/Sed), the dependent-sedentary, the saline-exercise (Sal/Exc), and the dependent-exercise (D/Exc) groups. The Sal/Exc and the D/Exc groups were allowed to freely exercise in a running wheel for 10 days. ⋯ Moreover, the increase of PS-LTP in the morphine-exercise group was greater (22.5%), but not statistically significant, than that of the Sal/Exc group. These results may imply an additive effect between exercise and morphine on mechanisms of synaptic plasticity. Such an interaction between exercise and chronic morphine may influence cognitive functions in opiate addicts.
-
Parkinson's disease (PD) is characterized by progressive dopamine (DA) depletion in the striatum. Exercise has been shown to be a promising non-pharmacological approach to reduce the risk of neurodegeneration diseases. This study was designed to investigate the potential neuroprotective effect of swimming training (ST) in a mouse model of PD induced by 6-hydroxydopamine (6-OHDA) in mice. ⋯ The mechanisms involved in this study are the modulation of GPx, GR and GST activities as well as IL-1β level in a PD model induced by 6-OHDA, protecting against the decrease of DA, DOPAC and HVA levels in the striatum of mice. These findings reinforce that one of the effects induced by exercise on neurodegenerative disease, such as PD, is due to antioxidant and anti-inflammatory properties. We suggest that exercise attenuates cognitive and motor declines, depression, oxidative stress, and neuroinflammation induced by 6-OHDA supporting the hypothesis that exercise can be used as a non-pharmacological tool to reduce the symptoms of PD.