Neuroscience
-
Death-associated protein kinase (DAPK) has been found promoting cell death under stress conditions, including cell death during brain ischemia. However, little is known about the mechanisms how DAPK is involved in the neuronal death-promoting process during ischemia. The present study was to examine the DAPK signal transduction pathways using an ischemia mimicking model, oxygen glucose deprivation (OGD). ⋯ The activation of DAPK in turn led to BimEL up-regulation and endoplasmic reticulum (ER) stress activation. Further analyses showed that DAPK mediated BimEL expression through extracellular signal-regulated protein kinase1/2 (ERK1/2) inactivation and c-Jun-N-terminal kinase1/2 (JNK1/2) activation. These findings revealed novel signal transduction pathways leading to neuronal death in response to OGD.
-
It was the aim of the present study to investigate menstrual cycle effects on selective attention and its underlying functional cerebral networks. Twenty-one healthy, right-handed, normally cycling women were investigated by means of functional magnetic resonance imaging using a go/no-go paradigm during the menstrual, follicular and luteal phase. On the behavioral level there was a significant interaction between visual half field and cycle phase with reaction times to right-sided compared to left-sided stimuli being faster in the menstrual compared to the follicular phase. ⋯ Functional imaging, however, did not reveal clear-cut menstrual phase-related changes in activation pattern in parallel to these behavioral findings. A functional connectivity analysis identified differences between the menstrual and the luteal phase: During the menstrual phase, left inferior parietal cortex showed a stronger negative correlation with the right middle frontal gyrus while the left medial frontal cortex showed a stronger negative correlation with the left middle frontal gyrus. These results can serve as further evidence of a modulatory effect of steroid hormones on networks of lateralized cognitive functions not only by interhemispheric inhibition but also by affecting intrahemispheric functional connectivity.
-
Recently we demonstrated that it is possible to influence tactile perception by applying a placebo manipulation consisting of verbal suggestion and conditioning and that this influence is associated to changes in the late components (N140 and P200) of somatosensory-evoked potentials (SEPs) (Fiorio et al., 2012). Due to the powerful effects of words in changing symptoms perception in the clinical domain, aim of this study was to investigate whether even in the tactile modality, perception can be changed by the mere use of persuasive words in a specific context. To this purpose, we adopted the same experimental setting of our previous study, apart from the conditioning procedure. ⋯ Results showed that the experimental group did not perceive an increase of tactile sensation after the treatment and no modification occurred in the late SEPs. This study proves that verbal suggestion alone is not sufficient to induce enhanced tactile perception (at least with this experimental setting), suggesting that a conditioning procedure may be necessary in the tactile modality. The absence of changes in the late SEP components could reflect the lack of strong expectation following the placebo procedure.
-
Social isolation during the vulnerable period of adolescence produces emotional dysregulation manifested by abnormalities in adult behaviors that require emotional processing. The affected brain regions may include the basolateral amygdala (BLA), where plasticity of glutamatergic synapses in principal neurons plays a role in conditioned emotional responses. This plasticity is dependent on NMDA receptor trafficking denoted by intracellular mobilization of the obligatory NR1 NMDA subunit. ⋯ However, isolates compared with group-reared mice had a significantly lower cytoplasmic (4.72 ± 0.517 vs 6.31 ± 0.517) and higher plasmalemmal (0.397 ± 0.0779 vs 0.216 ± 0.026) density of NR1 immunogold particles in CaMKII-containing dendritic spines. There was no rearing-dependent difference in the size or number of these spines or those of other dendritic profiles within the neuropil, which also failed to show an impact of ASI on NR1 immunogold labeling. These results provide the first evidence that ASI enhances the surface trafficking of NMDA receptors in dendritic spines of principal neurons in the BLA of adult mice showing maladaptive behaviors that are consistent with emotional dysregulation.
-
The axons of transected and re-apposed vestibulocochlear nerve of the frog, in contrast to mammalian species, regenerate and establish functional contacts within their original termination areas of the vestibular nuclear complex and the cerebellum. The lack of regenerative capability of the mammalian central nervous system (CNS) is partially attributed to various extracellular matrix (ECM) molecules, such as chondroitin sulfate proteoglycans (CSPG) and tenascin-R (TN-R), which exert inhibition on axon regeneration. In contrast to these molecules, hyaluronan (HA) was reported to be permissive for CNS regeneration. ⋯ The neuropil of the vestibular nuclei showed either a diffuse appearance with varying intensity of reactions, or dots and ring-like structures, which may represent the perinodal ECM of the vestibular fibers. In the cerebellum, indistinct PNNs that were only labeled for HA were present in the granular layer. Our findings suggest that the HA-rich, but CSPG and TN-R-free PNNs may be associated with the high degree of plasticity and regenerative potential of the amphibian vestibular system.