Neuroscience
-
We have developed a classifier capable of locating and identifying speech sounds using activity from rat auditory cortex with an accuracy equivalent to behavioral performance and without the need to specify the onset time of the speech sounds. This classifier can identify speech sounds from a large speech set within 40 ms of stimulus presentation. ⋯ Our results demonstrate that the spatiotemporal patterns generated in primary auditory cortex can be used to quickly and accurately identify consonant sounds from a continuous speech stream without prior knowledge of the stimulus onset times. Improved understanding of the neural mechanisms that support robust speech processing in difficult listening conditions could improve the identification and treatment of a variety of speech-processing disorders.
-
Numerous epidemiological studies have shown an association between pesticide exposure and the increased risk of developing Parkinson's disease. Previously we have reported that Dichlorvos exposure can induce oxidative stress, resulting in over-expression of pro-apoptotic genes and finally caspase-dependent nigrostriatal dopaminergic neuronal cell death in rat brain. Here, we examined the effect of caspase inhibition on PC12 cell death induced by Dichlorvos (30 μM). ⋯ Subsequent release of the apoptosis-inducing factor (AIF) from mitochondria and its translocation into the nucleus was also prevented by PJ34 pretreatment. In conclusion, the results of the present study show that caspase inhibition without concurrent inhibition of PARP1 is unlikely to be effective in preventing cell death because in the presence of the caspase inhibitor, caspase-independent cell death predominates due to PARP activation. These results suggest that combined therapeutic strategies directed at multiple cell death pathways may provide superior neuroprotection than those directed at a single mechanism.
-
Prolactin (PRL) has many functions in the CNS, including neuroprotection. During lactation, the dorsal hippocampus is protected from excitotoxic kainic acid (KA)-induced cellular damage. We have previously reported that systemic pre-treatment with ovine PRL had similar protective effects in female rats. ⋯ Treatment with either hPRL or S179D-PRL or the combination prevented the damaging effect of KA in these hippocampal regions (∼95% of corresponding control), but was not completely effective at preventing early seizure-related behaviors such as staring and wet dog shakes. Analysis of signals generated by hPRL and S179D-PRL showed no activation of signal transducer and activation of transcription 5 (Stat5) or other signaling molecules in the hippocampus, but activation of extracellular-regulated kinase (ERK)1/2 in the amygdala. These results support a central protective effect of both PRL forms and suggest that PRL could be exerting its protective action by indirectly modulating input signals to the hippocampus and thus regulating excitability.
-
The cytokine erythropoietin (Epo) initiates adaptive cellular responses to both moderate environmental challenges and tissue damaging insults in various non-hematopoietic mammalian tissues including the nervous system. Neuroprotective and neuroregenerative functions of Epo in mammals are mediated through receptor-associated Janus kinase 2 and intracellular signaling cascades that modify the transcription of Epo-regulated genes. Signal transducers and activators of transcription (STAT) and phosphoinositol-3-kinase (PI3K) represent key components of two important Epo-induced transduction pathways. ⋯ The results indicate that rhEpo mediates the protection of locust brain neurons through interference with apoptotic pathways by the activation of a Janus kinase-associated receptor and STAT transcription factor(s). The involvement of similar transduction pathways in mammals and insects for the mediation of neuroprotection and support of neural regeneration by Epo indicates that an Epo/Epo receptor-like signaling system with high structural and functional similarity exists in both groups of animals. Epo-like signaling involved in tissue protection appears to be an ancient beneficial function shared by vertebrates and invertebrates.
-
Subliminal electromagnetic fields (EMFs) triggered nonlinear evoked potentials in awake but not anesthetized animals, and increased glucose metabolism in the hindbrain. Field detection occurred somewhere in the head and possibly was an unrecognized function of sensory neurons in facial skin, which synapse in the trigeminal nucleus and project to the thalamus via glutamate-dependent pathways. If so, anesthetic agents that antagonize glutamate neurotransmission would be expected to degrade EMF-evoked potentials (EEPs) to a greater extent than agents having different pharmacological effects. ⋯ In contrast, neither EEPs nor AEPs were observed when anesthesia was produced partly or wholly using ketamine. The duration and latency of the EEPs was unaltered by xylazine anesthesia. The afferent signal triggered by the transduction of weak EMFs was likely mediated by NMDAR-mediated glutamate neurotransmission.