Neuroscience
-
Our previous study showed that lipopolysaccharide (LPS)-induced brain injury in the neonatal rat is associated with nitrosative and oxidative stress. The present study was conducted to examine whether melatonin, an endogenous molecule with antioxidant properties, reduces systemic LPS-induced nitrosative and oxidative damage in the neonatal rat brain. Intraperitoneal (i.p.) injection of LPS (2mg/kg) was administered to Sprague-Dawley rat pups on postnatal day 5 (P5), and i.p. administration of melatonin (20mg/kg) or vehicle was performed 5min after LPS injection. ⋯ Further, melatonin significantly attenuated LPS-induced increases in the number of activated microglia in the neonatal rat brain. The protection provided by melatonin was also associated with a reduced number of inducible nitric oxide synthase (iNOS)+ cells, which were double-labeled with ED1 (microglia). Our results show that melatonin prevents the brain injury and neurobehavioral disturbances induced by systemic LPS exposure in neonatal rats, and its neuroprotective effects are associated with its impact on nitrosative and oxidative stress.
-
Homer protein, a member of the post-synaptic density protein family, plays an important role in the neuronal synaptic activity and is extensively involved in neurological disorders. The present study investigates the role of Homer1b/c in modulating neuronal survival by using an in vitro traumatic neuronal injury model, which was achieved by using a punch device that consisted of 28 stainless steel blades joined together and produced 28 parallel cuts. ⋯ Therefore, Homer1b/c not only modulated the mGluR1a-inositol 1,4,5-triphosphate receptors-Ca(2+) signal transduction pathway, but also regulated the expression of mGluR1a in mechanical neuronal injury. These findings indicate that the suppression of Homer1b/c expression potentially protects neurons from glutamate excitotoxicity after injury and might be an effective intervention target in traumatic brain injury.
-
Visceral hypersensitivity is a hallmark of many clinical conditions and remains an ongoing medical challenge. Although the central neural mechanisms that regulate visceral hypersensitivity are incompletely understood, it has been suggested that stress and anxiety often act as initiating or exacerbating factors. Dysfunctional corticolimbic structures have been implicated in disorders of visceral hypersensitivity such as irritable bowel syndrome (IBS). ⋯ Several corticoamygdalar structures were analyzed for the presence of c-fos-positive immunoreactivity including the prelimbic cortex, infralimbic cortex, the anterior cingulate cortex (both rostral and caudal) and the amygdala. Our data demonstrate distinct activation patterns within these corticoamygdalar regions including differential activation in basolateral versus central amygdala following exposure to CRD but not the open field stress. The identification of this neuronal activation pattern may provide further insight into the neurochemical pathways through which therapeutic strategies for IBS could be derived.
-
In a previous work we found that nitric oxide (NO) and cyclicGMP (cGMP) inhibit glutamatergic synaptic transmission in trigeminal motoneurons (MnV). Here we study the actions of the NO/cGMP signaling pathway on glycinergic synaptic transmission in trigeminal and hypoglossal motoneurons (MnXII) in brain stem slices of neonatal rats. Glycinergic inhibitory postsynaptic currents (IPSCs) were recorded in MnV by stimulation of the supratrigeminal nucleus (SuV) and in MnXII by stimulation of the nucleus of Roller. ⋯ Our data show that NO, through its second messenger cGMP, reduces inhibitory glycinergic synaptic transmission in both MnV and MnXII. For MnV, evidence in favor of presynaptic inhibition of glycine release is presented. Given our previous data together with the current results, we propose that the NO/cGMP signaling pathway participates pre- and postsynaptically in the combined regulation of MnV and MnXII activities in motor acts in which they participate.
-
It is believed that muscarinic M1/4 receptors are closely correlated to the dopaminergic system and are strongly involved in the pathogenesis of Parkinson's disease (PD). In addition to regulating lipid metabolism and protection from stroke, statins have been used to regulate the declined cognition. We aimed to explore the regional changes in M1/4 receptors in the 6-hydroxydopamine (6-OHDA)-lesioned rat brain. ⋯ Our results provide strong evidence that M1/4 receptor modulation after simvastatin administration did, at least partially, contribute to the improvement in the long-term memory in 6-OHDA-induced PD rats. These results provide a possible mechanism for simvastatin treatment in psycho-neurological diseases such as PD via M1/4 receptors.