Neuroscience
-
Nuclear distribution factor E homolog like 1 (NDEL1) plays an important role in mitosis, neuronal migration, and microtubule organization during brain development by binding to disrupted-in-schizophrenia-1 (DISC1) or lissencephaly (LIS1). Although some evidence has suggested that DISC1 expression is altered in epilepsy, few studies have reported the relationship between NDEL1 and the etiology of epilepsy. In present study, we first investigated the expression of NDEL1 and its binding protein DISC1 after pilocarpine-induced epilepsy in male C57BL/6 mice. ⋯ Moreover, SE also increased the number of blood vessels that fed the CA3 and DG regions of the hippocampus and increased the incidence of abnormalities in capillary network formation where NDEL1 protein was expressed positively. Meanwhile, the expression of phosphorylated ERK (p-ERK) was also increased during the spontaneous seizure period, with a similar expression pattern as NDEL1 and DISC1. Based on these results, we hypothesize that NDEL1 might interact with DISC1 to activate ERK signaling and function as a potential protective factor during the spontaneous seizure period after pilocarpine-induced SE.
-
The pre-Bötzinger complex (preBötC) of the ventrolateral medulla is the kernel for inspiratory rhythm generation. However, it is not fully understood how inspiratory neural activity is generated in the preBötC and propagates to other medullary regions. We analyzed the detailed anatomical connectivity to and from the preBötC and functional aspects of the inspiratory information propagation from the preBötC on the transverse plane of the medulla oblongata. ⋯ Intra-preBötC imaging with high spatiotemporal resolution during a single spontaneous inspiratory cycle unveiled deterministic nonlinearities, i.e., chaos, in the population recruitment. Collectively, we comprehensively elucidated the anatomical pathways to and from the preBötC and dynamics of inspiratory neural information propagation: (1) From the preBötC in one side to the contralateral preBötC, which would synchronize the bilateral rhythmogenic kernels, (2) from the preBötC directly to the bilateral hypoglossal premotor and motor areas as well as to the nuclei tractus solitarius, and (3) from the hypoglossal premotor areas toward the hypoglossal motor nuclei. The coincidence of identified anatomical and functional connectivity between the preBötC and other regions in adult and neonatal rats, respectively, indicates that this fundamental connectivity is already well developed at the time of birth.
-
Manganese (Mn) is an essential trace element that is required for normal brain functioning. However, excessive intake of Mn has been known to lead to neuronal loss and clinical symptoms resembling idiopathic Parkinson's disease (IPD), whose precise molecular mechanism remains largely elusive. In the study, we established a Mn-exposed rat model and identified a mitochondrial protease, the mature form of high temperature requirement A2 (HtrA2/Omi), which was significantly upregulated in rat brain striatum after Mn exposure. ⋯ In addition, blockage of HtrA2 activity with UCF-101 restored Mn-induced reduction in XIAP expression. Finally, we observed that UCF-101 treatment ameliorated Mn-induced apoptosis in PC12 cells. Collectively, these findings suggested that upregulated HtrA2 played a role in Mn-induced neuronal death in brain striatum.
-
5-Hydroxymethylcytosine (5hmC) is abundant in the brain, suggesting an important role in epigenetic control of neuronal functions. In this paper, we show that 5hmC and 5-methylcytosine (5mC) levels are coordinately distributed in gene promoters of the rhesus macaque prefrontal cortex. ⋯ Furthermore, we found that early-life maternal deprivation is associated, in the adult monkey cortex, with DNA hydroxymethylation changes of promoters of genes related to neurological functions and psychological disorders. These results reveal that early social adversity triggers variations in brain DNA hydroxymethylation that could be detected in adulthood.
-
Early brain injury (EBI) after subarachnoid hemorrhage (SAH) is characterized by a reduction in excitatory amino acid transporter 2 (EAAT2) expression and severe amino acid excitotoxicity. The aim of this study was to explore the neuroprotective effect of ceftriaxone (CEF), a potent compound that up-regulates EAAT2, against EBI and the potential mechanisms using in vitro experiments and a rat model of SAH. Intracisternal treatment with CEF significantly improved neurological outcomes and alleviated extracellular glutamate accumulation after SAH. ⋯ In Morris water maze (MWM) tests, CEF remarkably ameliorated the SAH-induced cognitive dysfunction in spatial learning memory and reference memory. CEF promoted the nuclear translocation of p65 as well as the activation of Akt in hippocampal astrocytes in vitro and in vivo. These findings suggest that CEF may exert significant protective effects against EBI following SAH by modulating the PI3K/Akt/NF-κB signaling pathway.