Neuroscience
-
Cortical microcircuitry plays a pivotal role in encoding sensory information reaching the cortex. However, the fundamental knowledge concerning the mechanisms that govern feature-encoding by these sub-networks is still sparse. Here, we show through multi-electrode recordings in V1 of conventionally prepared anesthetized cats, that an avalanche of synergistic neural activity occurs between functionally connected neurons in a cell-assembly in response to the presented stimulus. ⋯ The added excitation (facilitation) of connected neurons is almost four times the responsiveness of unconnected neurons. This suggests that connectedness confers the added excitability to neurons; consequently leading to feature-encoding within the emergent 50-ms-period. Furthermore, the facilitation significantly decreases as a function of orientation selectivity spread.
-
Interactions between the prelimbic cortex and the basolateral amygdala underlie fear memory processing, mostly through acquiring and consolidating the learning of a conditioned fear. More recently, studies highlighted the role of the dorsal periaqueductal gray (DPAG) in the modulation of learning fear responses. In addition, extensive data in the literature have signaled the importance of serotonin (5-HT) on fear and anxiety. ⋯ In these regions LA but not HA rats were susceptible to the anxiolytic-like effect of 5-HT1A receptor activation. It is thought that the expression of conditioned fear in HA subjects may be dependent on other 5-HT receptors, as the 5-HT1B subtype, and/or changes in other systems such as the GABA and glutamate neurotransmitters. These results increase our understanding of the rostrocaudal influence of 5-HT on the unconditioned and conditioned fear responses in LA and HA subjects and, to some extent, are in disagreement with the theoretical current that emphasizes the role of 5-HT on anxiety, mainly at the subcortical and midbrain levels.
-
Early brain injury (EBI) after subarachnoid hemorrhage (SAH) is characterized by a reduction in excitatory amino acid transporter 2 (EAAT2) expression and severe amino acid excitotoxicity. The aim of this study was to explore the neuroprotective effect of ceftriaxone (CEF), a potent compound that up-regulates EAAT2, against EBI and the potential mechanisms using in vitro experiments and a rat model of SAH. Intracisternal treatment with CEF significantly improved neurological outcomes and alleviated extracellular glutamate accumulation after SAH. ⋯ In Morris water maze (MWM) tests, CEF remarkably ameliorated the SAH-induced cognitive dysfunction in spatial learning memory and reference memory. CEF promoted the nuclear translocation of p65 as well as the activation of Akt in hippocampal astrocytes in vitro and in vivo. These findings suggest that CEF may exert significant protective effects against EBI following SAH by modulating the PI3K/Akt/NF-κB signaling pathway.
-
Therapeutic options for hypoxic-ischemic brain damage (HIBD) are scarce and inefficient. Recently, many studies have demonstrated that red photon plays an important role in anti-inflammatory processes as well as apoptosis, the main trait of HIBD. In this study, we investigated whether red photon can protect from HIBD in SD rats and oxygen-glucose deprivation (OGD) in PC12 cells. ⋯ Furthermore, we found that bax and bcl-2 were mainly expressed in pyramidal cells of the hippocampus CA1 and CA3. Importantly, Morris Water Maze test results revealed an improvement in learning ability and spatial memory in rats after irradiation. Overall, our data showed that short-term irradiation with red photon in the acute phase inhibits the mitochondrial apoptotic pathway via regulation of bcl-2-related proteins and reduction of ROS levels, thereby decreasing apoptosis in nerve cells and improving the neurological prognosis of HIBD.
-
Shape perception can be achieved based on various cues such as luminance, color, texture, depth and motion. To investigate common neural mechanisms underlying shape perception cued by various visual attributes, we examined single-neuron activity in the monkey anterior superior temporal sulcus (STS) in response to shapes defined by luminance and motion cues during shape discrimination. We found cortical mapping with respect to selectivity for shapes as well as for direction of motion in the STS. ⋯ They showed a highly similar shape preference between the different visual attributes, indicating cue-invariant shape selectivity. The cue-invariant shape-selectivity was modulated with target selection as well as with discrimination performance of monkeys. These results suggest that lSTS could be involved in cue-invariant shape discrimination, but not the uSTS.