Neuroscience
-
Glial cell line-derived neurotrophic factor (GDNF) exerts neuroprotective and neurorestorative effects on neurons and GDNF plays a significant role in maintenance of the dopamine neurons utilizing grafting to create a nigrostriatal microcircuit of Gdnf knockout (Gdnf(-/-)) tissue. To further evaluate the role of GDNF on organization of the nigrostriatal system, single or double grafts of ventral mesencephalon (VM) and lateral ganglionic eminence (LGE) with mismatches in Gdnf genotypes were performed. The survival of single grafts was monitored utilizing magnetic resonance imaging (MRI) and cell survival and graft organization were evaluated with immunohistochemistry. ⋯ The TH-positive innervation of co-grafts was sparse when the striatal co-grafts were derived from the Gdnf(-/-) tissue while dense and patchy when innervating LGE producing GDNF. The TH-positive innervation overlapped with the organization of dopamine and cyclic AMP-regulated phosphoprotein-relative molecular mass 32,000 (DARPP-32)-positive neurons, that was disorganized in LGE lacking GDNF production. In conclusion, GDNF is important for a proper striatal organization and for survival of TH-positive neurons in the presence of the striatal tissue.
-
Although intracerebral hemorrhage (ICH) increases the level of glutamate in the perihematomal area and cerebral spinal fluid (CSF) in the ICH acute phase, it is unclear whether elevated glutamate activates neuronal nitric oxide synthase (nNOS) in the ICH brain and whether nNOS is an important target for ICH treatment. Here, we assessed the role of the nNOS inhibitor S-methyl-l-thiocitrulline (SMTC) in the activity of NADPH-d and ICH-induced brain injuries. An autologous blood intracerebral infusion model in male rats was used. ⋯ The loss of laminin- and occludin-stained vessels was significant in perihematomal regions after 24h of ICH and was significantly attenuated by the administration of SMTC (p<0.01 for laminin, p<0.05 for occluding, compared with the ICH group). Neuronal death and neurological deficits after ICH were also decreased in SMTC treatment rats (p<0.01, vs. the ICH group). The results suggest that the administration of the nNOS inhibitor SMTC after ICH protects against ICH-induced brain injuries and improves neurological function.
-
Head direction (HD) cells have been identified in a number of limbic system structures. These cells encode the animal's perceived directional heading in the horizontal plane and are dependent on an intact vestibular system. ⋯ These mechanisms are: (1) the ascending vestibular signal is generated by more than just vestibular-only neurons, (2) not all vestibular-only neurons contributing to the HD pathway have firing rates that are attenuated by active head turns, (3) the ascending pathway may be spared from the affects of the attenuation in that the HD system receives information from other vestibular brainstem sites that do not include vestibular-only cells, and (4) the ascending signal is affected by the inhibited vestibular signal during an active head turn, but the HD circuit compensates and uses the altered signal to accurately update the current HD. Future studies will be needed to decipher which of these possibilities is correct.
-
Comparative Study
Insulin resistance and gray matter volume in neurodegenerative disease.
The goal of this study was to compare insulin resistance in aging and aging-related neurodegenerative diseases, and to determine the relationship between insulin resistance and gray matter volume (GMV) in each cohort using an unbiased, voxel-based approach. Insulin resistance was estimated in apparently healthy elderly control (HC, n=21) and neurodegenerative disease (Alzheimer's disease (AD), n=20; Parkinson's disease (PD), n=22) groups using Homeostasis Model Assessment of Insulin Resistance 2 (HOMA2) and intravenous glucose tolerance test (IVGTT). HOMA2 and GMV were assessed within groups through General Linear Model multiple regression. ⋯ Finally, the directionality of the relationship between HOMA2 and GMV was disease-specific. Both HC and AD subjects exhibited negative relationships between HOMA2 and brain volume (increased HOMA2 associated with decreased brain volume), while a positive relationship was observed in PD. This cross-sectional study suggests that insulin resistance is increased in neurodegenerative disease, and that individuals with AD appear to have more severe metabolic dysfunction than individuals with PD or PD dementia.
-
We tested the hypothesis that decreasing the control level of O2 from 95% to 40% reduces tissue partial pressure of oxygen (pO2), decreases extracellular nitric oxide (NO) and decreases intracellular superoxide (O2(-)) while maintaining viability in caudal solitary complex (cSC) neurons in slices (∼300-400 μm; neonatal rat P2-22; 34-37°C). We also tested the hypothesis that normobaric hyperoxia is a general stimulant of cSC neurons, including CO2-excited neurons. Whole-cell recordings of cSC neurons maintained in 40% O2 were comparable to recordings made in 95% O2 in duration and quality. ⋯ Likewise, a higher incidence of CO2-inhibited and lower incidence of CO2-excited neurons were observed in 85-95% O2. 82% of O2-excited neurons were also CO2-chemosensitive; CO2-excited (86%) and CO2-inhibited neurons (84%) were equally stimulated by hyperoxia. Our findings demonstrate that chronic (hours) and acute (minutes) exposure to hyperoxia stimulates firing rate in the majority of cSC neurons, most of which are also CO2 chemosensitive. Our findings support the hypothesis that recurring exposures to acute hyperoxia and hyperoxic reoxygenation-a repeating surge in tissue pO2-activate redox and nitrosative signaling mechanisms in CO2-chemosensitive neurons that alter expression of CO2 chemosensitivity (e.g., increased expression of CO2-inhibition) compared to sustained hyperoxia (85-95% O2).